Lecture 3

The nature of electromagnetic radiation.

Objectives:
1. Basic introduction to the electromagnetic field:
 - Definitions
 - Dual nature of electromagnetic radiation
 - Electromagnetic spectrum
2. Main radiometric quantities: energy, flux, and intensity.
3. Concepts of extinction (scattering + absorption) and emission.

Required reading:
G: 2.1, 2.2.1, 2.2.2, 2.3, 2.4, 4.1, Appendix 1.

Additional/advanced reading:
Online tutorial: Chapter 1, Sections 1.2 – 1.3
http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/chapter1/chapter1_1_e.html

1. Basic introduction to electromagnetic field.

Electromagnetic radiation is a form of transmitted energy. Electromagnetic radiation is so-named because it has electric and magnetic fields that simultaneously oscillate in planes mutually perpendicular to each other and to the direction of propagation through space.

- Electromagnetic radiation has the dual nature:
 - it exhibits wave properties and particulate properties.
Wave nature of radiation:

Radiation can be thought of as a traveling transverse wave.

Figure 3.1 A schematic view of an electromagnetic wave propagating along the \mathbf{z} axis. The electric \mathbf{E} and magnetic \mathbf{H} fields oscillate in the x-y plane and perpendicular to the direction of propagation.

Poynting vector gives the flow of radiant energy and the direction of propagation as (in the cgs system of units)

$$\mathbf{S} = c^2 \varepsilon_0 \mathbf{E} \times \mathbf{H}$$ \hspace{1cm} [3.1]

here c is the speed of light in vacuum ($c = 2.9979 \times 10^8$ m/s \equiv 3.00x108 m/s) and ε_0 is vacuum permittivity (or dielectric constant). \mathbf{S} is in units of energy per unit time per unit area (e.g., W m$^{-2}$).

NOTE: $\mathbf{E} \times \mathbf{H}$ means a vector product of two vectors.

- \mathbf{S} is often called instantaneous Poynting vector. Because it oscillates at rapid rates, a detector measures its average value $\langle \mathbf{S} \rangle$ over some time interval that is a characteristic of the detector.

- Waves are characterized by frequency, wavelength, speed and phase.
Frequency is defined as the number of waves (cycles) per second that pass a given point in space (symbolized by \tilde{v}).

Wavelength is the distance between two consecutive peaks or troughs in a wave (symbolized by the λ).

![Image of Wavelength Diagram]

Relation between λ and \tilde{v}:

$$\lambda \tilde{v} = c$$ \[3.2\]

- Since all types of **electromagnetic radiation** travel at the speed of light, short-wavelength radiation must have a high frequency.
- Unlike speed of light and wavelength, which change as electromagnetic energy is propagated through media of different densities, frequency remains constant and is therefore a more fundamental property.

Wavenumber is defined as a count of the number of wave crests (or troughs) in a given unit of length (symbolized by v):

$$v = \tilde{v} / c = 1/\lambda$$ \[3.3\]

UNITS:

- **Wavelength units:** length
 - Angstrom (Å): $1 \text{ Å} = 1 \times 10^{-10} \text{ m}$;
 - Nanometer (nm): $1 \text{ nm} = 1 \times 10^{-9} \text{ m}$;
 - Micrometer (μm): $1 \text{ µm} = 1 \times 10^{-6} \text{ m}$;

- **Wavenumber units:** inverse length (often in cm⁻¹)

NOTE: Conversion from the wavelength to wavenumber:

$$\nu[\text{cm}^{-1}] = \frac{10,000 \text{ cm}^{-1} \mu \text{m}}{\lambda[\mu \text{m}]}$$ \[3.4\]
Frequency units: unit cycles per second 1/s (or s⁻¹) is called hertz (abbreviated Hz)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Frequency, (cycles/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hertz, Hz</td>
<td>1</td>
</tr>
<tr>
<td>Kilohertz, KHz</td>
<td>10³</td>
</tr>
<tr>
<td>Megahertz, MHz</td>
<td>10⁶</td>
</tr>
<tr>
<td>Gigahertz, GHz</td>
<td>10⁹</td>
</tr>
</tbody>
</table>

Particulate nature of radiation:

Radiation can be also described in terms of particles of energy, called **photons**.

The energy of a photon is given as:

\[E_{\text{photon}} = h \nu = h \frac{c}{\lambda} = h c \nu \]

[3.5]

where \(h \) is Plank’s constant (\(h = 6.6256 \times 10^{-34} \text{ J s} \)).

- Eq. [3.5] relates energy of each photon of the radiation to the electromagnetic wave characteristics (\(\nu \) and \(\lambda \)).
- Photon has energy but it has no mass and no charge.

NOTE: The quantized nature of light is most important when considering absorption and emission of electromagnetic radiation.

PROBLEM: A light bulb of 100 W emits at 0.5 µm. How many photons are emitted per second?

Solution:

Energy of one photon is \(E_{\text{photon}} = h \nu = h \frac{c}{\lambda} \), thus, using that 100 W = 100 J/s, the number of photons per second, \(N \), is

\[
N (s^{-1}) = \frac{100 (Js^{-1}) \lambda (m)}{h (Js) c (ms^{-1})} = \frac{100 \times 0.5 \times 10^{-6}}{6.6256 \times 10^{-34} \times 2.9979 \times 10^8} = 2.517 \times 10^{20}
\]

NOTE: Large number of photons is required because Plank’s constant \(h \) is very small!!!
Spectrum of electromagnetic radiation:

The electromagnetic *spectrum* is the distribution of electromagnetic radiation according to energy or, equivalently, according to the wavelength or frequency.

![Electromagnetic Spectrum](image-url)

Figure 3.2 The electromagnetic spectrum.

![Electromagnetic Spectrum](image-url)

Figure from http://www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html
Figure 3.3 Visible region of the electromagnetic spectrum.

NOTE: In remote sensing, sensor’s spectral bands in the visible are often called by their color (e.g., blue, green, and red channels)

Effects of atmospheric gases (will be discussed in Lecture 6-7)

Figure 3.4 A generalized diagram showing relative atmospheric radiation transmission at different wavelengths. Blue zones show low passage of incoming and/or outgoing radiation and white areas denote atmospheric windows, in which the radiation doesn't interact much with air molecules and hence, isn't absorbed.
• In this course we study the UV, visible, infrared and microwave radiation.

Table 3.2 Relationships between radiation components.

<table>
<thead>
<tr>
<th>Name of spectral region</th>
<th>Wavelength region, µm</th>
<th>Spectral equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
<td>0.1 - 4</td>
<td>Ultraviolet + Visible + Near infrared = Shortwave</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>4 - 100</td>
<td>Far infrared = Longwave</td>
</tr>
<tr>
<td>Infrared</td>
<td>0.75 - 100</td>
<td>Near infrared + Far infrared</td>
</tr>
<tr>
<td>Ultraviolet</td>
<td>0.1 - 0.38</td>
<td>Near ultraviolet + Far ultraviolet = UV-A + UV-B + UV-C + Far ultraviolet</td>
</tr>
<tr>
<td>Shortwave</td>
<td>0.1 - 4</td>
<td>Solar = Near infrared + Visible + Ultraviolet</td>
</tr>
<tr>
<td>Longwave</td>
<td>4 - 100</td>
<td>Terrestrial = Far infrared</td>
</tr>
<tr>
<td>Visible</td>
<td>0.38 - 0.75</td>
<td>Shortwave - Near infrared - Ultraviolet</td>
</tr>
<tr>
<td>Near infrared</td>
<td>0.75 - 4</td>
<td>Solar - Visible - Ultraviolet = Infrared - Far infrared</td>
</tr>
<tr>
<td>Far infrared</td>
<td>4 - 100</td>
<td>Terrestrial = Longwave = Infrared - Near infrared</td>
</tr>
<tr>
<td>Thermal</td>
<td>4 - 100 (up to 1000)</td>
<td>Terrestrial = Longwave = Far infrared</td>
</tr>
<tr>
<td>Microwave</td>
<td>$10^3 - 10^6$</td>
<td>Microwave</td>
</tr>
<tr>
<td>Radio</td>
<td>$> 10^6$</td>
<td>Radio</td>
</tr>
</tbody>
</table>

Table 3.3 Microwave frequency bands used in remote sensing

<table>
<thead>
<tr>
<th>Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Old”</td>
</tr>
<tr>
<td>“New”</td>
</tr>
<tr>
<td>Frequency [GHz]</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Ku</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Ka</td>
</tr>
</tbody>
</table>

EXAMPLE: L-band is used onboard American SEASAT and Japanese JERS-1 satellites.
2. Basic radiometric quantities: intensity and flux.

Solid angle is the angle subtended at the center of a sphere by an area on its surface numerically equal to the square of the radius

\[\Omega = \frac{s}{r^2} \] \[\text{[3.6]}\]

Units: of a solid angle = steradian (sr)

A differential solid angle can be expressed as

\[d\Omega = \frac{ds}{r^2} = \sin(\theta) d\theta d\phi, \]

using that a differential area is

\[ds = (r d\theta) (r \sin(\theta) d\phi) \]

Example: Solid angle of a unit sphere = \(4\pi\)

Example: What is the solid angle of the Sun from the Earth if the distance from the Sun from the Earth is \(d=1.5\times10^8\) km and Sun’s radius is \(R_s = 6.96\times10^5\) km.

\[\Omega = \frac{\pi R_s^2}{d^2} = 6.76 \times 10^{-5} \text{sr} \]

Intensity (or radiance) is defined as radiant energy in a given direction per unit time per unit wavelength (or frequency) range per unit solid angle per unit area perpendicular to the given direction:

\[I_\lambda = \frac{dE_\lambda}{ds \cos(\theta)d\Omega d\lambda d\phi} \] \[\text{[3.7]}\]

\(I_\lambda\) is referred to as the **monochromatic** intensity.

- Monochromatic does not mean at a single wavelengths \(\lambda\), but in a very narrow (infinitesimal) range of wavelength \(\Delta\lambda\) centered at \(\lambda\).

Note: same name: intensity = specific intensity = radiance

Units: from Eq.[3.7]:

\((\text{J sec}^{-1} \text{ sr}^{-1} \text{ m}^{-2} \mu\text{m}^{-1}) = (\text{W sr}^{-1} \text{ m}^{-2} \mu\text{m}^{-1})\)
Figure 3.5 Intensity is the flow of radiative energy carried by a beam within the solid angle \(d\Omega \).

Properties of intensity:

a) In general, intensity is a function of the coordinates \((\mathbf{r})\), direction \((\mathbf{\Omega})\), wavelength (or frequency), and time. Thus, it depends on seven independent variables: three in space, two in angle, one in wavelength (or frequency) and one in time.

b) In a transparent medium, the intensity is constant along a ray.

- If intensity does not depend on the direction, the electromagnetic field is said to be **isotropic**.
- If intensity does not depend on position the field is said to be **homogeneous**.

Flux (or irradiance) is defined as radiant energy in a given direction per unit time per unit wavelength (or frequency) range per unit area perpendicular to the given direction:

\[
F_\lambda = \frac{dE_\lambda}{dtdsd\lambda}
\]

[3.8]
UNITS: from Eq.[3.8]:
(J sec\(^{-1}\) m\(^{-2}\) µm\(^{-1}\)) = (W m\(^{-2}\) µm\(^{-1}\))

From Eqs. [3.7]-[3.8], the flux is integral of normal component of radiance over some solid angle

\[F_\lambda = \int_\Omega I_\lambda \cos(\theta) d\Omega \quad [3.9] \]

- Each detector measures electromagnetic radiation in a particular wavelength range, Δλ. The intensity \(I_{\Delta \lambda} \) and flux \(F_{\Delta \lambda} \) in this range are determined by integrating over the wavelength the monochromatic intensity and flux, respectively:

\[I_{\Delta \lambda} = \int_{\lambda_1}^{\lambda_2} I_\lambda d\lambda \quad F_{\Delta \lambda} = \int_{\lambda_1}^{\lambda_2} F_\lambda d\lambda \quad [3.10] \]

NOTE: Many satellite sensors have a narrow viewing angle and hence measure the intensity (not flux). To measure the flux, a sensor needs to have a wide viewing angle.

3. The concepts of extinction (scattering + absorption) and emission.
Electromagnetic radiation in the atmosphere interacts with gases, aerosol particles, and cloud particles.

- **Extinction** and **emission** are two main types of the interactions between an electromagnetic radiation field and a medium (e.g., the atmosphere).

General definition:

Extinction is a process that decreases the radiant intensity, while emission increases it.

NOTE: “same name”: extinction = attenuation
Radiation is emitted by all bodies that have a temperature above absolute zero (0 K) (often referred to as thermal emission).

- **Extinction** is due to absorption and scattering.

Absorption is a process that removes the radiant energy from an electromagnetic field and transfers it to other forms of energy.

Scattering is a process that does not remove energy from the radiation field, but may redirect it.

NOTE: Scattering can be thought of as absorption of radiant energy followed by re-emission back to the electromagnetic field with negligible conversion of energy. Thus, scattering can remove radiant energy of a light beam traveling in one direction, but can be a “source” of radiant energy for the light beams traveling in other directions.

- **Elastic scattering** is the case when the scattered radiation has the same frequency as that of the incident field. Inelastic (Raman) scattering results in scattered light with a frequency different from that of the incident light.

4. Polarization. Stokes parameters.

Polarization is a phenomenon peculiar to transverse waves.

- Electromagnetic radiation travels as transverse waves, i.e., waves that vibrate in a direction perpendicular to their direction of propagation.

NOTE: In contrast to electromagnetic waves, sound is a longitudinal wave that travels through media by alternatively forcing the molecules of the medium closer together, then spreading them apart.
Polarization is the distribution of the electric field in the plane normal to the propagation direction.

Vertically polarized wave is one for which the electric field lies only in the x-z plane.

Horizontally polarized wave is one for which the electric field lies only in the y-z plane.

- Horizontal and vertical polarization are an example of linear polarization.

Mathematical representation of a plane wave propagating in the direction \(z \) is

\[
E = E_0 \cos(k z - \omega t + \varphi_0)
\]

[3.11]

where \(E_0 \) is the **amplitude**;

\(k \) is the propagation (or wave) constant, \(k = \frac{2\pi}{\lambda} \)

\(\omega \) is the circular frequency, \(\omega = kc = \frac{2\pi}{\lambda} \)

\(\varphi_0 \) is the constant (or initial phase)

\(\varphi = (kz - \omega t + \varphi_0) \) is **the phase of the wave**
Introducing complex variables, Eq.[3.11] can be expressed as

\[E = E_0 \exp(i \varphi) \] \hspace{1cm} [3.12]

NOTE: In Eq.[3], we use \(\exp(\pm i \varphi) = \cos(\varphi) \pm i \sin(\varphi) \)

The electric vector \(\vec{E} \) may be decomposed into the parallel \(E_l \) and perpendicular \(E_r \) components as

\[\vec{E} = E_l \vec{l} + E_r \vec{r} \]

We can express \(E_l \) and \(E_r \) in the form

\[
E_l = E_{l0} \cos(kz - \omega t + \varphi_{l0}) \\
E_r = E_{r0} \cos(kz - \omega t + \varphi_{r0})
\]

Then we have

\[
\frac{E_l}{E_{l0}} = \cos(\zeta) \cos(\varphi_{l0}) - \sin(\zeta) \sin(\varphi_{l0}) \\
\frac{E_r}{E_{r0}} = \cos(\zeta) \cos(\varphi_{r0}) - \sin(\zeta) \sin(\varphi_{r0})
\]

where \(\zeta = k z - \omega t \).

Performing simple mathematical manipulation, we obtain

\[
(\frac{E_l}{E_{l0}})^2 + (\frac{E_r}{E_{r0}})^2 - 2(\frac{E_l}{E_{l0}})(\frac{E_r}{E_{r0}}) \cos(\Delta \varphi) = \sin^2(\Delta \varphi) \] \hspace{1cm} [3.13]

where \(\Delta \varphi = \varphi_{l0} - \varphi_{r0} \) called the **phase shift**.

Eq.[3.13] defines an ellipse => **elliptically polarized wave**.

If the phase shift \(\Delta \varphi = n \pi \) \((n=0, +/-1, +/-2,...)\), then

\[
\sin(\Delta \varphi) = 0 \text{ and } \cos(\Delta \varphi) = \pm 1, \text{ and Eq.[3.13] becomes}
\]

\[
\left(\frac{E_l}{E_{l0}} \pm \frac{E_r}{E_{r0}} \right)^2 = 0 \quad \text{or} \quad E_r = \pm \frac{E_{r0}}{E_{l0}} E_l
\] \hspace{1cm} [3.14]

Eq.[3.14] defines straight lines => **linearly polarized wave**.
If the phase shift $\Delta \varphi = n \pi / 2$ (n = +/-1, +/-3,…) and $E_{i0} = E_{r0} = E_0$, then

$$\sin(\Delta \varphi) = \pm 1 \text{ and } \cos(\Delta \varphi) = 0,$$

and Eq.[3.13] becomes

$$E_t^2 + E_r^2 = E_0^2 \quad [3.15]$$

Eq.[3.15] defines a circle \Rightarrow circular polarized wave

NOTE: The sign of the phase shift gives handedness: right-handed and left-handed polarization

Unpolarized radiation (or randomly polarized) is electromagnetic wave in which the orientation of the electrical vector changes randomly.

If there is a definite relation of phases between different scatterers \Rightarrow radiation is called coherent. If there is no relations in phase shift \Rightarrow light is called incoherent

- Natural light is incoherent.
- Natural light is unpolarized.

- The state of polarization is completely defined by the four parameters: two amplitudes, the magnitude and the sign of the phase shift (see Eq.[3.13]). Because the phase difference is hard to measure, the alternative description called a Stokes vector is often used.

Stokes Vector consists of four parameters (called Stokes parameters):

- intensity I,
- the degree of polarization Q,
- the plane of polarization U,
- the ellipticity V.
Notation

\[
\begin{pmatrix}
I \\
Q \\
U \\
V
\end{pmatrix}
\quad \text{or} \quad \{I, Q, U, V\}
\]

- **Stokes parameters** are defined via the intensities which can be measured:

 I = total intensity

 Q = I_0 - I_90 = differences in intensities between horizontal and vertical linearly polarized components;

 U = I_{+45} - I_{-45} = differences in intensities between linearly polarized components oriented at +45° and -45°

 V = I_{rcl} - I_{lcr} = differences in intensities between right and left circular polarized components.

- **Stokes parameters** can be expressed via the amplitudes and the phase shift of the parallel and perpendicular components

 \[
 I = E_{ro}^2 + E_{lo}^2 \\
 Q = E_{ro}^2 - E_{lo}^2 \\
 U = 2 E_{ro} E_{lo} \cos(\Delta \phi) \\
 V = 2 E_{ro} E_{lo} \sin(\Delta \phi)
 \tag{3.16}
 \]

EXAMPLE. Stokes parameters for the vertical polarization:

For this case \(E_l = 0 \)

\[
\begin{pmatrix}
I \\
Q \\
U \\
V
\end{pmatrix} = \begin{pmatrix}
E_{ro}^2 \\
E_{lo}^2 \\
0 \\
0
\end{pmatrix} = E_{ro}^2 \begin{pmatrix}
1 \\
1 \\
0 \\
0
\end{pmatrix}
\]
For a light beam, we have

\[I^2 \geq Q^2 + U^2 + V^2 \]

For **unpolarized** light:

\[Q = U = V = 0 \]

The **degree of polarization** \(P \) of a light beam is defined as

\[P = \left(Q^2 + U^2 + V^2 \right)^{1/2} / I \]

The **degree of linear polarization** \(LP \) of a light beam is defined by neglecting \(U \) and \(V \)

\[LP = -\frac{Q}{I} \]

NOTE: Measurements of polarization are actively used in remote sensing in the solar and microwave regions.

Polarization in the microwave – mainly due to reflection from the surface.

Polarization in the solar – reflection from the surface and scattering by molecules and particulates.