REMOTE SENSING OF THE ATMOSPHERE AND OCEANS

Instructor: Prof. Irina N. Sokolik
office 2258, phone 404-894-6180
isokolik@eas.gatech.edu

Meeting Time: Mondays: 3:05-4:25 PM L1175
 Wednesdays: 3:05-4:25 PM Computer Room L1110

Office Hours: Wednesdays 4:25-6:00 PM (or by appointment)

Lecture 1

Introduction and Logistics

Objectives:
1. What this course is about.
2. How the course is organized:
 ➢ Lectures
 ➢ Computer Modeling Laboratories
 ➢ Exams
 ➢ Class Research Project
3. Required/additional/advanced reading.
4. Grading.
5. Course outline, lecture schedule, and reading assignments.
1. What this course is about

General definition:

Remote sensing is the collection of information about an object without coming into physical contact with it.

Definition used in this course:

Remote sensing is characterization of an object based on measurements of electromagnetic radiation.

- This course provides a foundation for understanding the physical principles of remote sensing of the atmosphere and oceans.

- The main goal of the course is to build a broad conceptual framework for physical understanding the methodology and various applications of remote sensing in studying the atmosphere and oceans.

NOTE: This course does NOT include remote sensing of land and vegetation, image processing, or instrumentation development.

- The course is designed as a collection of lectures and computer modeling laboratories.
- The lectures focus on the fundamentals of the interactions between electromagnetic radiation and atmospheric gases, aerosols and clouds, and ocean surfaces, covering the spectrum from the ultraviolet through the microwave.
- The labs provide hands-on experience in using remote sensing data for various applications in atmospheric and oceanic sciences. Topics to be covered include aerosol and cloud property retrievals, ozone and air pollution characterization, vertical temperature and humidity profile retrievals, sea ice characterization, and retrievals of ocean color and sea surface temperature, among others.
2. How this course is organized:

> **Lectures:**

Lectures are developed to provide the most critical material and to complement the textbook.

Lecture notes will be posted (in PDF format) at the course website:

http://irina.eas.gatech.edu/EAS6145_2007.htm

!!!!! Please review lecture materials before coming to the class.

> **Computer Modeling Laboratories**

Will be posted at the course web and available on-line

> **Exams:**

Two midterm exams:

Exam 1: February 28
Exam 2: April 30

> **Class Research Project**

Goal is to perform an analysis and interpretation of remote sensing data in a well-defined problem.

Plan of a research project must be prepared by a student but discussed with and approved by me. Try to select a topic of your class project as close as possible to your research.

Research project must be prepared as a web presentation.

Presentation of student’s projects is scheduled for the last week of classes.
General guidelines for preparing your class project:

1) Define a topic of your project by selecting a specific atmospheric or oceanic parameter and remote sensing technique(s) used to retrieve this parameter.

 For instance, characterization of ozone from OMI observations.

2) Identify and study at least 3-5 papers dealing with the selected topic.

3) Perform an original analysis of the remote sensing data in a well-defined problem.

 For instance, interannual variability of O3 over the Northern America.

4) Your paper (about 15-20 pages) should show
 - the importance of the atmospheric or oceanic parameter selected;
 - brief description of a remote sensor;
 - explanation of a retrieval algorithm;
 - results of your analysis;
 - validation of retrieved data against independent measurements and/or modeling;
 - brief summary (e.g., advantages and disadvantages of the retrieval technique, etc.)

3. Required/additional/advanced reading.

Required Text:

Recommended introductory text:

A First Course in Atmospheric Radiation.

Online tutorials:

Canada Centre for Remote Sensing (CCRS) remote sensing tutorial:

http://www.ccrs.nrcan.gc.ca/ccrs/learn/learn_e.html

NASA remote sensing tutorial:

http://rst.gsfc.nasa.gov/Front/tofc.html
Committee on Earth Observation Satellites (CEOS) remote sensing tutorial:
http://ceos.cnes.fr:8100/cdrom-00/astart.htm

Univ. of Illinois tutorial: remote sensing for meteorology:
http://ww2010.atmos.uiuc.edu/(Gh)/guides/rs/home.rxml

Additional Text:
An introduction to atmospheric radiation.

Satellite meteorology: An Introduction.

Physical principles of remote sensing.

Introduction to the physics and techniques of remote sensing.

Remote sensing: Principles and interpretation.

NOTE: The various textbooks might have somewhat different terminology and very different notations.

4. Grading.

 Mid-term exams (2) 30%
 Computer modeling labs 40%
 Research project 30%
5. Course outline, lecture schedule, and reading assignments.

REMOTE SENSING OF THE ATMOSPHERE AND OCEANS

Outline

1. Basics of remote sensing: introductory survey
2. The nature of electromagnetic radiation:
 - Polarization. Stokes’ parameters.
3. Emission and reflection from the ocean and land surfaces
5. Absorption/emission by atmospheric gases and effects on remote sensing.
6. Scattering/absorption by aerosols and clouds and effects on remote sensing.
8. Applications of passive remote sensing using extinction and scattering:
 - Sensing of ozone in the UV region
 - Ocean color
 - Sensing of clouds and aerosols (retrieval of optical depth and particle sizes)
10. Applications of passive remote sensing using emission:
 - Sensing of sea surface temperature (SST)
 - Sensing of precipitation
 - Sensing of clouds
11. Principles of sounding by emission:
 - Sounding of the temperature profile
 - Sounding of trace gases and air pollution
12. Principles of active remote sensing: Radars and lidars
13. Applications of radars:
 - Sensing of clouds and precipitation
14. Applications of lidars:
 - Sensing of water vapor and trace gases
 - Sensing of aerosols and clouds
<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture/Lab</th>
<th>Topic</th>
<th>Required reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 8</td>
<td>Lecture 1.</td>
<td>Logistic: Goals and structure of the course.</td>
<td></td>
</tr>
<tr>
<td>Jan 10</td>
<td>Lecture 2.</td>
<td>Basics of remote sensing: introductory survey</td>
<td>S 1.1, 1.7, p.395-398, 426-427</td>
</tr>
<tr>
<td>Jan 15</td>
<td>SCHOOL HOLIDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 17</td>
<td>Lecture 3.</td>
<td>The nature of electromagnetic radiation. Polarization. Stokes’ parameters</td>
<td>S 2.1-2.4</td>
</tr>
<tr>
<td>Jan 22</td>
<td>Lecture 4.</td>
<td>Radiation law. Blackbody emission. Emission and reflection from the ocean and land surfaces.</td>
<td>S 2.5; 4.4; p. 177-183</td>
</tr>
<tr>
<td>Jan 24</td>
<td>Lab 1.</td>
<td>Planck function and emission from the surfaces. Sea-ice detection.</td>
<td></td>
</tr>
<tr>
<td>Jan 29</td>
<td>Lecture 5.</td>
<td>The composition and structure of the atmosphere. Absorption/emission by atmospheric gases and effects on remote sensing</td>
<td>S 1.3-1.5, 3.2.1; 3.1-3.5</td>
</tr>
<tr>
<td>Jan 31</td>
<td>Lab 2.</td>
<td>Absorption by atmospheric gases</td>
<td></td>
</tr>
<tr>
<td>Feb 5</td>
<td>Lecture 6.</td>
<td>Properties of atmospheric aerosols and clouds. Rayleigh scattering. Scattering/absorption by aerosols and clouds.</td>
<td>S 1.6, 4.1, 4.3, 5.1-5.4, 5.6, 5.7</td>
</tr>
<tr>
<td>Feb 7</td>
<td>Lab 3.</td>
<td>Modeling optical characteristics with Mie theory. Analysis of aerosol optical properties measured from ground-based and aircraft platforms.</td>
<td>S 6.1</td>
</tr>
<tr>
<td>Feb 14</td>
<td>Lab 4.</td>
<td>Retrievals of aerosol properties from passive satellite remote sensing</td>
<td></td>
</tr>
<tr>
<td>Feb 19</td>
<td>Lecture 8.</td>
<td>Applications of passive remote sensing using extinction and scattering: Remote sensing of ozone in the UV region</td>
<td>S 6.2.1, 6.5, pp.177-180</td>
</tr>
<tr>
<td>Feb 21</td>
<td>Lab 5.</td>
<td>Retrievals of atmospheric gases from passive remote sensing</td>
<td></td>
</tr>
<tr>
<td>Feb 26</td>
<td>Lecture 9.</td>
<td>Applications of passive remote sensing using extinction and scattering: Ocean color retrievals and atmospheric correction algorithms</td>
<td></td>
</tr>
<tr>
<td>Feb 28</td>
<td></td>
<td>MID-TERM EXAM I</td>
<td></td>
</tr>
<tr>
<td>Mar 7</td>
<td>Lab 6.</td>
<td>Retrievals of SST</td>
<td></td>
</tr>
<tr>
<td>Mar 12</td>
<td>Lecture 11.</td>
<td>Applications of passive remote sensing using emission: Sensing of precipitation and clouds.</td>
<td>S 7.4, 7.6</td>
</tr>
<tr>
<td>Mar 14</td>
<td>Lab 7.</td>
<td>ISCCP project. Cloud detection and analysis</td>
<td></td>
</tr>
<tr>
<td>Mar 26</td>
<td>Lecture 12.</td>
<td>Principles of sounding by emission. Sounding of the temperature profile. Sounding of trace gases and air pollution</td>
<td>S 7.5, 7.5.4, 7.7</td>
</tr>
<tr>
<td>Mar 28</td>
<td>Lab 8.</td>
<td>Atmospheric sounding</td>
<td></td>
</tr>
<tr>
<td>Apr 2</td>
<td>Lecture 13.</td>
<td>Principles of active remote sensing: Radar sensing of cloud and precipitation.</td>
<td>S 8.1, 8.2.1, 8.2.2, 8.2.3, 8.3</td>
</tr>
<tr>
<td>Apr 4</td>
<td>Lab 9.</td>
<td>Radar sensing of precipitation</td>
<td></td>
</tr>
<tr>
<td>Apr 9</td>
<td>Lecture 14.</td>
<td>Principles of active remote sensing: Lidars sensing of aerosols and clouds</td>
<td>S 8.4.1, 8.4.2, 8.4.3, 8.4.4</td>
</tr>
<tr>
<td>Apr 11</td>
<td>Lab 10.</td>
<td>Analysis of lidar sensing</td>
<td></td>
</tr>
<tr>
<td>Apr 16</td>
<td>Lecture 15.</td>
<td>Special Topic</td>
<td></td>
</tr>
<tr>
<td>Apr 18</td>
<td>Lecture 16.</td>
<td>Students’ project presentation</td>
<td></td>
</tr>
<tr>
<td>Apr 23</td>
<td>Lecture 17.</td>
<td>Students’ project presentation</td>
<td></td>
</tr>
<tr>
<td>Apr 25</td>
<td>Lecture 18.</td>
<td>Course Review</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>EXAM II</td>
<td></td>
</tr>
</tbody>
</table>