Lecture 9

Terrestrial infrared radiative processes. Part 2:

K-distribution approximation.

Objectives:
2. Correlated k-distribution approximation (CKD).

Required reading:
L02:4.3

Additional reading:

The KD method is developed to compute the spectral transmittance (hence the spectral intensity or spectral fluxes) based on grouping of gaseous absorption coefficients.

NOTE: The k-distribution approach was proposed by Ambartzumian in 30th as an alternative to the computationally expensive line-by-line methods.

- KD method benefits from the fact that the same value of k_ν is encountered many times over a given spectral interval => thus to eliminate the redundancy, one can group the values of k and perform the transmittance calculation only once for a given value of k.
Strategy:

Consider a **homogeneous** atmospheric layer. Spectral transmission is (see Eq.[8.6], Lecture 8)

\[
T_r(u) = \frac{1}{\Delta \nu} \int \exp(-k, u) d\nu
\]

In a homogeneous atmospheric layer, spectral transmittance is independent of the ordering of \(k \) in a given spectral range, i.e., the order in which the wavenumbers are summed does not matter => so sum them from low to high \(k \)

Thus, we want to replace the integration over the wavenumber by an integration over \(k \). It can be done by introducing a **normalized probability distribution function** for \(k_\nu \)

\[
T_r(u) = \frac{1}{\Delta \nu} \int \exp(-k, u) d\nu = \int_0^\infty \exp(-ku)f(k)dk \tag{9.1}
\]

where we set \(\int_0^\infty f(k)dk = 1 \)

\(f(k) \) is the fraction of the spectral band with absorption coefficient \(k \to k+dk \)

\(f(k) \) is a smooth function

Figure 9.1 (a) A schematic of absorption line spectra at two different pressure. **(b)** The two probability density function \(f(k) \) associated with (a). The shaded area shows the strongest absorption.
The cumulative probability function can be defined as

\[g(k) = \int_0^k f(k) \, dk \]

and \(g(0) = 0; \quad g(\infty) = 1 \) and \(dg(k) = f(k) \, dk \).

\(g(k) \) is the fraction of the spectrum with absorption coefficient below \(k \)

NOTE: By definition, \(g(k) \) is a monotonically increasing and smooth function in \(k \)-space, Therefore, \(k(g) \), as an inverse function of \(g(k) \), is a smooth function in \(g \)-space.

Therefore, the spectral transmittance can be written as

\[T_v(u) = \frac{1}{\Delta v} \int_{\Delta v} \exp(-k,u) \, du = \int_0^\infty \exp(-ku) f(k) \, dk = \int_0^1 \exp(-k(g)u) dg \]

Figure 9.2 (a) Absorption coefficient \(k_\nu \) (in \(\text{cm}^{-1} \text{ atm}^{-1} \)) as a function of wavenumber in 9.6 \(\mu \text{m} \) ozone band (resolution of 0.05 cm\(^{-1} \), \(p=30 \text{ mb}, T=200K \)). (b) The probability density function \(f(k) \) of the absorption coefficient. (c) The cumulative probability distribution function as a function of \(k \). (d) Same as (c) but \(k \) vs. \(g \).
Because both $g(k)$ and $k(g)$ are smooth functions, the above integral can be calculated by a finite sum as

$$T_p(u) = \int_0^1 \exp(-k(g)u)dg \approx \sum_{i=1}^N \exp(-k(g_i)u)\Delta g_i = \Delta g_1 e^{-k_{1}u} + \Delta g_2 e^{-k_{2}u} + \cdots + \Delta g_N e^{-k_{N}u}$$

where Δg_i is the quadrature weight.

Thus the **KD method** allows calculating the spectral transmittance as a finite weighted sum of exponent in g-space, replacing the tedious wavenumber integration.

Numerical realization of KD:

(see illustration below)

Consider a spectral interval $\Delta \nu$ that contains numerous absorption lines.

Let’s divide it into N intervals of $\Delta \nu_j$, $j = 1, 2, 3 \ldots N$

The probability distribution function can be written as

$$f(k) = \frac{1}{\Delta \nu} \frac{d\nu}{dk} = \frac{1}{\Delta \nu} \sum_j \frac{\Delta \nu_j}{\Delta k}$$

where $\Delta \nu_j$ is the subinterval of $\Delta \nu$ where k is a monotonic function of ν.

Then the cumulative probability is

$$g(k) = \frac{1}{\Delta \nu} \sum_j \int_0^k \frac{\Delta \nu_j}{\Delta k} dk' = \frac{1}{\Delta \nu} \sum_j \int_0^k \Delta \nu_j(k) = \frac{n(0,k)}{N}$$

where $n(0,k)$ is the number of computational points that contribute to k cumulatively.
Figure 9.3 How to calculate the absorption coefficient in g-space from the known absorption coefficient in the wavenumber domain. Solid line gives absorption coefficient as a function of ν. Numbers on the right side are the data points in each Δk interval (total number $N=35$).

Thus by definition, $g(j\Delta k)=n(0, j\Delta k)/N$

CKD is the extension of KD for an inhomogeneous atmosphere.

Each pressure and temperature along the path has a unique \(k_v \) spectrum.

CKD method sorts each \(k_v(p, T) \) spectrum independently to make k-distributions \(k(g, p, T) \) for each \(p \) and \(T \).

NOTE: In practice, discrete k-distributions \(k_j(p_l, T_m) \) are made for a set of pressures \(p_l \) and temperatures \(T_m \) and interpolated in between to any \(p \) and \(T \).

- **Overlap of gases in spectral band:**

 What do we do about multiple gases absorbing in one spectral band?

Overlap method #1: assume that absorption spectra are independent.

\[
\int_{\Delta \nu} T_v^{(1)} T_v^{(2)} d\nu = T_{g}^{(1)} T_{g}^{(2)} = \sum_{i=1}^{N} \exp(-k_i(g)u_1)\Delta g_{1,i} \sum_{j}^{M} \exp(-k(g)u_2)\Delta g_{2,j}
\]

\[
T_g(u_1, u_2) = \sum_{i=1}^{N} \Delta g_{1,i} \sum_{j}^{M} \Delta g_{2,j} \exp(-\tau_{mn})
\]

where \(\tau_{mn} = k_{1n} u_1 + k_{2n} u_2 \),

thus we have \(M \times N \) terms.

Overlap method #2: introduce mixing ratio as an additional factor, so \(k(g, p, T, q) \)

- **An example of correlated k-distribution models**

Divides shortwave into 6 bands with total 54 \(k \)’s and longwave into 12 bands with total of 121 \(k \)’s.
<table>
<thead>
<tr>
<th>Band</th>
<th>Region (cm$^{-1}$)</th>
<th>N g's</th>
<th>Gases</th>
<th>Solar Flux (W/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50000-14500</td>
<td>10</td>
<td>O3</td>
<td>619.62</td>
</tr>
<tr>
<td>2</td>
<td>14500-7700</td>
<td>8</td>
<td>H2O</td>
<td>484.30</td>
</tr>
<tr>
<td>3</td>
<td>7700-5250</td>
<td>12</td>
<td>H2O</td>
<td>149.85</td>
</tr>
<tr>
<td>4</td>
<td>5250-4000</td>
<td>7</td>
<td>H2O</td>
<td>48.73</td>
</tr>
<tr>
<td>5</td>
<td>4000-2850</td>
<td>12</td>
<td>H2O</td>
<td>31.66</td>
</tr>
<tr>
<td>6</td>
<td>2850-2500</td>
<td>5</td>
<td>H2O</td>
<td>5.80</td>
</tr>
<tr>
<td>7</td>
<td>2200-1900</td>
<td>2</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1900-1700</td>
<td>3</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1700-1400</td>
<td>4</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1400-1250</td>
<td>4</td>
<td>H2O, CH4, N2O</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1250-1100</td>
<td>3</td>
<td>H2O, CH4, N2O</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1100-980</td>
<td>5</td>
<td>H2O, O3</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>980-800</td>
<td>2</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>800-670</td>
<td>10</td>
<td>H2O, CO2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>670-540</td>
<td>12</td>
<td>H2O, CO2</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>540-400</td>
<td>7</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>400-280</td>
<td>7</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>280-0</td>
<td>8</td>
<td>H2O</td>
<td></td>
</tr>
</tbody>
</table>