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ABSTRACT

Existing two-stream approximations to radiative transfer theory for particulate media are shown to be
represented by identical forms of coupled differential equations if the intensity is replaced by integrals of
the intensity over hemispheres. One set of solutions thus suffices for all methods and provides convenient
analytical comparisons. The equations also suggest modifications of the standard techniques so as to
duplicate exact solutions for thin atmospheres and thus permit accurate determinations of the effects of
typical aerosol layers. Numerical results for the plane albedos of plane-parallel atmospheres (single-
scattering albedo = 0.8, 1.0; optical thickness = 0.25, 1, 4, 16; Henyey-Greenstein phase function with
asymmetry factor 0.75) are given for conventional and modified Eddington approximations, conven-
tional and modified two-point quadrature schemes, the hemispheric-constant method and the delta-function
method, all for comparison with accurate discrete-ordinate solutions. A new two-stream approximation is
introduced that reduces to the modified Eddington approximation in the limit of isotropic phase functions
and to the exact solution in the limit of extreme anisotropic scattering. Comparisons of plane albedos and
transmittances show the new method to be generally superior over a wide range of atmospheric conditions
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Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres:

(including cloud and aerosol layers), especially in the case of nonconservative scattering.

1. Introduction

Two-stream methods have been widely used for
many years in providing rapid approximate answers
.to problems of radiative transfer in particulate
materials. They avoid the complex and lengthy com-
puter procedures necessary for numerical solutions
of the radiative transfer equation, while yielding
closed-form analytical results that are relatively
easy to interpret and that often represent adequately
some of the most important features of multiple-
scattering processes. Although many of the more
recent two-stream studies have centered on such
atmospheric problems as the effects on planetary
albedos of haze and clouds (cf. Sagan and Pollack,
1967; Liou, 1973, 1974; Lyzenga, 1973), solar ir-
radiance through inhomogeneous turbid atmospheres
(Shettle and Weinman, 1970), global climatic model-
ing (Weare and Snell, 1974; Temkin et al., 1975)
and the climatic effects of aerosols (Rasool and
Schneider, 1971; Coakley and Chylek, 1975), most
of the fundamental concepts were formulated much
earlier for different purposes and resulted in suc-
cessful industrial applications to radiative transfer
in pigmented films (e.g., paint), opal glass, plastics,
paper, rubber and textiles (cf., Kortim, 1969).
One of the difficulties inherent in any comprehen-
sive treatment of two-stream approximations is the
number and variety of methods that have been used.

While some methods are distinctly different from
others, some are only slightly different but have
never been correlated apparently because of the lack
of a basic theoretical framework within which com-
parisons can be made. The present paper begins
with the development of such a framework and
shows that existing two-stream approximations can
be represented by identical forms of coupled dif-
ferential equations if the radiation intensity is re-
placed by integrals of the intensity over hemi-
spheres. These integrals are directly related to
planetary albedos and to the transmission of radia-
tion through atmospheres and can also be used for
determining such atmospheric properties as the
heating caused by aerosol layers. Since two-stream
methods are reliable only for integrated quantities,
as opposed to angular-dependent intensities, the in-
troduction of integrals at an early stage is not a real
limitation on the applicability of results.

Important features of the consolidation of methods
include the direct analytical comparisons that it
provides, the inclusion of some methods that were
previously thought to be conceptually or mathe-
matically different, and the existence of standard
forms of solution that pertain to any given method
with the appropriate: choice of parameters. Recent
review papers by Irvine and Lenoble (1974) and by
Irvine (1975), for example, have discussed the dif-
ferences between certain selected approximations
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rather than the perhaps more important similarities.
Another feature of the consolidation is the sugges-
tion of modifications to standard two-stream tech-
niques so as to duplicate exact solutions for thin
atmospheres. The new equations should be par-
ticularly appropriate for determining the effects of
typical aerosol layers and, in some cases at least,
are shown to be almost as applicable to optically
thick media such as clouds.

Numerical results for the plane albedos of plane-
parallel atmospheres are given over a wide range of
variables for conventional and modified Eddington
approximations, conventional and modified two-
point quadrature schemes, the hemispheric con-
stant method and the delta-function method, all for
comparison with accurate discrete-ordinate solu-
tions. A new two-stream approximation is introduced
that reduces to the modified Eddington approxima-
tion in the limit of isotropic phase functions and to
the exact solution in the limit of extreme anisotropic
scattering. Comparisons of plane albedos and trans-
mittances show this method to be generally superior
over large ranges of atmospheric conditions, espe-
cially in the case of nonconservative scattering.

2. Basic theory

With the assumption of time-independence, elas-
tic scattering (i.e., no conversion from one frequency
to another in the range of observation), no internal
sources (e.g., thermal emission at long wavelengths),
and sufficiently rare media that each particle is in the
far field of the radiation scattered from any other
particle (i.e., no interparticle shadowing), the radia-
tive transfer equation can be written (Chandrasek-
har, 1960) for the diffuse intensity I(r,u,¢) as

" dI(T,[.L,(b) _
dr

2 21(7,p,9)

1 1 27
——j J Pl ') (o', d s

27 o

= V2Fp(u, ¢; —po, dole". (1)

The spherical coordinates # = arccosu and ¢, with
6 measured from the positive (outward) surface nor-
mal, refer to the direction of a pencil of light rays of
intensity I at optical depth 7, 7 F is the incident col-
limated flux crossing unit area perpendicular to the
propagation direction defined by 8, = arccos—u,
and ¢y, and p(u,¢; u',¢’) is the phase function or
single-particle scattering law for radiation scattered
from the direction (u',¢’') into the direction (u,d).
The phase function is normalized according to the
expression

1 1 2w
- j f Plpsds w'd)dbdp = vy, (2)
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where w, is the single-scattering albedo, i.e., the
ratio of the scattering coefficient to the sum of the
scattering and absorption coefficients.

If p(u,d; u',¢") is a function only of the cosine of
the scattering angle, Chandrasekhar (1960) has
shown that the azimuthal integral satisfies '

1 2T
p(p,u') = ——J p(p,d; p' @' )de
27 o
=wo p, 2 + DgP(p)PLp), (3)
l

where P/(u) is the Ith order Legendre polynomial
and the coefficients g; are defined by

1 1
g = — J PAwp(Ddp. @
209 J1
The normalization condition (2) then becomes -
. )
j Pa')dps = 2, )
-1
With the additional definition
2T
Itr) = j I, ,0)d, ©
0
the azimuthal integration of Eq. (1) yields
5 dl(r,u)
H dr
1
=2I(T,u) — J P, Y (7,1 )dp'
—1
= wEp(u, —pole™ . (7)

As explained in the Introduction, it is convenient
to define the hemispheric integrals

1

I5(7) = J wl(r, =p)dp ®
0
and the quantity
1 1
Bi=o— J s, —p)dp'
Wo Jo
1 1
- L f Pluop)du’  (9)
2w Jo

in order to produce the following pair of equations
from the w integration of Eq. (7) as it stands and Eq.
(7) with u replaced by —pu:

d1+ 4[1

I(r,,w)d
o (r,w)dp

0

1 1 1
——j [ Pl oY d
20 L

- 7TFO)0 Boe —Tiko (10)
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dI- !
e R
dr

0
1 1 1
+ -[ J Py =) (" )dw'dp
S ' ’ A
+ wFwy(l — Byle . (11)

Two-stream methods are defined for present pur-
poses as methods satisfying the simplified expres-
sions

dart

T =y I* — vl — wFwyyse ™™, (12)

.

dr- + - ~1)

_‘i_ = ')'21 - 'le + 'n'F(lJo'Y4e TI‘-O, (13)
T

which are obtained from Eqgs. (10) and (11) by as-
suming the w dependence of I and approximating
the integrals. The v,’s are determined by the ap-
proximations used and are independent of 7 in all
cases. As will be shown, their values are constrained
by physical requirements; for example, the constraint
vs + v, = 1 follows immediately from energy con-
servation.

3. Solutions for plane-parallel atmospheres

Egs. (12) and (13) can be solved by standard tech-
niques for given boundary conditions. In particular,
the solutions for collimated radiation incident on a
plane-parallel atmosphere with boundary conditions
I*(7") = I(0) = 0, where 7’ is the optical thickness,
yield the following resuits for the plane albedo (or
reflectance) R = (wFuy) I*(0) and the transmit-
tance T = exp(—7'/uy) + (wF ) U~ (7'):

@y
A= EBadik + e + (k= y)e™]
X [(1 = kpo)(ay +-kys)e*™
= (1 + kpo)az — kys)e™
= 2k(y; — appele™ ] (14)

T = ¢~ "'/to
Wy

x {1 -

{ (1 = Kpdk + y)e*™ + (k —yy)e™]
X [(1 + kpo)a, + kys)ex™
— (1 = kpo)ay — kyy)e™

—2k(ys + aypole™ 0] . (15)
Additional parameters are
ay = YrYs t+ YoYs, (16)
- oy = Y1¥s T V24, 17
k= (v = )R (18)
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For thin atmospheres, i.e., R and T linear in T,
Egs. (14) and (15) reduce to

W, T !

!

T
vs=1—-T — —[1 - wys + v4)], (19)
Ho Mo

which should be compared with the corresponding
result

R:

2 Bo=1-T -1 - w)
Ho Mo
obtained from Eq. (7). Egs. (14) and (15) thus ap-

proach the correct thin-atmosphere limit if y; = 8,
and if

R=

(20)

s+ va=1, @1

the latter being a statement of conservation of
energy that will be required of all two-stream ‘ap-
proximations. Although both of these conditions
also follow from the comparison of Egs. (10) and
(11) with Egs. (12) and (13), some of the two-stream
methods involve approximations to the integral 8,
defined by Eq. (9); hence, the condition y; = 8, is
not met by all methods and the symbols vy; and v,
will be retained for generality.

A useful result applicable to conservative atmos-
pheres follows from the semi-infinite limit

wola; + k’)’s)
(1 — kpo)k + 1)
of Eq. (14). The use of Egs. (17), (18) and (21) in this

expression, together with the requirement that
R(7' = ») = 1 when w, = 1, yields

R(r' = x) = (22)

w():l.

Y1 = Ve (23)

In addition to providing a second condition to be re-
quired of all two-stream approximations, Eq. (23)
permits the following reduction of Egs. (14) and (15)
for conservative scattering:

R(we = 1)
= [y + (s = YVapo)(1 — 7))
1+ v
=1—-T(w = 1). (24)

A second set of two-stream approximations, the
results of which are denoted by R’ and T, corre-
sponds to Eqgs. (12) and (13) without the terms ex-
plicitly containing the incident flux wF. The in-
tensities then refer to the total radiation field instead
of just the diffuse component. Although the boundary
condition at the lower surface of a plane-parallel
atmosphere remains (') = 0 for the solution of the -
coupled equations, the boundary condition at the
upper surface becomes I-(0) = wFu,. The failure
of this procedure to require the more detailed con-
dition that I(7, —u) be a delta function centered on
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TaBLE 1. Coefficients y; in the two-stream equations (12) and (13).

Method Y1 V2 h¢
Eddington W7 — we(d + 3g)] —Y4[1 — w4 — 3g)] V42 — 3gu)
Modified Eddington 147 — wy(4 + 3g)] =141 — w4 — 3g)] Bo
Quadrature (BY22)[2 — we(1 + 2)] (32w,/2)(1 — g) 15(1 — 3Y3%gu,)
Modified quadrature* 3'2[1 — w1 — 8] 32448, Bo
Hemispheric constant  2[1 — wy(1 — B)] 2woB8 Bo
Delta function mo '[1 ~— w(1 — By} @ofBo/to Bo

Hybrid modified 7 — 38 — wo(4 + 3g) + w,g*(4Bo + 38)

_ 1 -2 — 04 - 3g) — wg’4B, + 3¢ — 4

Eddington-delta

1 41 — g*(1 - o)l
function ’

ZIj R p——Y Po

* B, corresponds to p, = 3712,

o when 7 = 0 may be a cause of concern for some
of the methods to be discussed in the next section.
The plane albedos and transmittances for this second
set of two-stream approximations are given by the
following expressions analogous to Eqs. (14), (15),
(19), (22) and (24):

o - o
R = Ih(ﬂ) _ Y21 — exp(—2k7)] @5
I-(0)  k+vy, +k—vy)exp(—2k+")
. I~(v") _ 2k exp(—k7') @6
I7(0) k+vy +(k—1y,) exp(—2k7')
R’(thin atmos) = y,7’
= 1 — T’(thin atmos)
=y — v, (@7
Y2
R'(z' = = , 28
(' = x) K+ (28)
and, if y, = vy, when o, = 1,
Rw=1=—20 —1-T(@=1. (29
1 + ’yIT,

Eq. (27) yields the correct thin-atmosphere limit (20)
for collimated incidence only if y, = w,B8y/ue and

Y1 — ¥2 = (1 — o)/ 1y, which conditions are seldom

satisfied in the models to be considered.

4. Two-stream approximations

The coefficients vy; are determined for each two-
stream approximation according to the following
steps: 1) the assumption of an approximate form for
I(7,) that defines the particular model, 2) the use of
this form to evaluate the integrals in Egs. (10) and
(11), and 3) the direct comparison of the results with
Egs. (12) and (13). Expressions for v,, vy, and vy; are
collected in Table 1 and v, is understood to be
1 — vy; unless noted otherwise in the text.

a. Eddington and modified Eddington approxima-
tions

Both the standard Eddington approximation (cf.
Irvine, 1968, 1975; Kawata and Irvine, 1970; Shettle

and Weinman, 1970) and the modified Eddington
approximation (as introduced in this paper) start
with the assumption I(7,u) = Iy(r) + wl,(7), the use
of which in Eq. (8) gives

I(r, =) = 15[Q + 3wI*(@) + 2 F 3WI(@],
(30)

The substitution of this expression in the integrands
in Egs. (10) and (11) yields

;1,20.

r I(r, zpu)dp = Y%[(4 = 3)It + (4 ¥ 3)I7], @1

0

1 1
k. J J p(p, 2p)(r,u')dp'dp
2 Ja

= Vawol(4 £ 3g)I* + (4 ¥ 3g)[7], (32)
and finally the y, and y, shown in the first two rows
of Table 1 after comparisons with Egs. (12) and (13).
Employed in the evaluation of the integral in Eq.
(32) are Eq. (3), the orthogonality of Legendre poly-
nomials, the normalization condition (5) requiring
go = 1, and the definition of the asymmetry factor
g = g,. Note that the higher order anisotropies
of p do not appear in this approximation of the
multiple-scattering integral.

Also shown in Table 1 are the values of vy, for the
standard and modified Eddington approximations,
the former corresponding to the substitution of
P(pg, —1') = wo(1 — 3gueu’) for the actual phase
function in Eq. (9). One apparent advantage of the
standard method is the consistency provided be-
tween the forms of y, and Eq. (32); however, such
consistency may not be essential if higher order con-
tributions to p are effectively smoothed by multiple
scattering. An argument would then exist for de-
scribing the multiple-scattering integral by Eq. (32)
and simultaneously using the full phase function to
evaluate the single-scattering term involving 7;,
as is done in the modified approximation. In any
event, as seen from Eq. (19) and Table 1, a definite
disadvantage to the standard v, is the negative plane
albedo computed for thin atmospheres when g
> 2(3ue)~t. Irvine (1968, 1975) has demonstrated
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F1G. 1. Plane albedo R as a function of u, (cosine of the angle of incidence) and the optical
thickness 7’ of a plane-parallel atmosphere for the Eddington (short dashes) and modified
Eddington (long dashes) approximations. The scattering is conservative (w, = 1), the phase
function is Henyey-Greenstein with g = 0.75, and the solid curves are rigorous discrete-

ordinate results.

numerically the inadequacies of the standard method
when single scattering predominates (e.g., small
7', small w,, near-grazing incidence or large g) and
thus when v, is especially significant.

The same values of y, and vy, are obtained if the
intensities refer to the total radiation field. As seen
from Table 1 and Egs. (25), (27) and (28), negative
plane albedos result for atmospheres of all optical
thicknesses when g > (4w, — 1)(3w,)~! and thus for
all non-negative values of g if w, < %4. Lyzenga
(1973) reached the same conclusion in calculations
on semi-infinite atmospheres. Of more importance,
however, is the fact that y, and v, are independent
of uo; hence, the Eddington method described in this
paragraph cannot apply to collimated incidence and
will not be further considered.

b. Quadrature and modified quadrature methods

Since a number of different two-point quadrature
methods have been developed for applications to

radiative transfer, a more detailed discussion is
given than might otherwise be justified. All such
methods start with the approximation ’

J P’ = o) ()

+p(p, —u)I(r, —py), (33)
so that

1 1 1
—[ J p(p, =p)M(r,u)dp'du
2 )y )

R

if I*(7) = u,I(7, =p,). The quadrature points are
+u,, B, is defined by Eq. (9), and the upper and
lower entries in the square brackets in Eq. (34) cor-
relate with the plus and minus signs in the integrand.
These expressions can also be identified with the fol-
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lowing assumption about /(7,u) that will be useful
for later developments:

I(r, xp) = K7, Tp)0(p — o)
= w7 ED( — py), p=0. (35)

The substitution into Eqs. (10) and (11) of Eqgs.
(33) and (34) and the approximation

Jl I(r, xp)dp = IF/u, (36)
yields ’
Y1 = L (1 — wo(1 = By, (37)
#
Y2 = woBi1/it1, (38)
¥s = Bo, (39
~ Ya =1 = By, (40)

after comparisons of the results with Egs. (12) and
(13). With particular choices of u,, Egs. (37)~(40)
can be made to represent any of the two-stream
methods based on two-point quadrature.

L0
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Liou’s (1973, 1974) method of discrete ordinates
employs the Gaussian choice u, = 37Y2, which
makes Eq. (33) an accurate representation of the
multiple-scattering integral if the integrand is ade-
quately described by a cubic in u’. However, in
order to duplicate Liou’s complete formulation,
quadrature must also be applied to the integrals 3,
and B, defined by Eq. (9) and the phase function must
be replaced everywhere by the summation (3) with
[ = 0 and 1. For example,

1
¥s = ——P(i1, —Ho) = Y2(1 — 3V%py), (41)

2w,

1
Vs = — p(pg,p0) = Y2(1 + 32gu,). 42)

2w,

The truncation of the phase-function summation is
necessary for the condition (21) of conservation of
energy to be satisfied. Liou’s method is denoted as
quadrature in Table 1, where the complete set of
v; coefficients is given.

Egs. (19) and (41) show that Liou’s two-point
method yields negative plane albedos for thin atmos-

FiG. 2. As in Fig. 1 except the short-dash curves refer to two-point quadrature and
the long-dash curves to modified two-point quadrature.
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F1G. 3. As in Fig. 1 except the short-dash curves refer to the hemispheric-constant method
and the long-dash curves to the delta-function method.

pheres when g > (3'2ue)~!. Such behavior, which
is similar to that of the standard Eddington approxi-
mation, can be avoided by using the full phase func-
tions in evaluations of 8, and B,. The results are
denoted in the fourth row of Table 1 as modified
quadrature. It should be mentioned that in the quad-
rature formulations of this paper and also in the
development by Liou, since he ultimately has to
evaluate [} uwl(r, zu)dp in order to obtain R and
T, pu, = 37Y2 is not the appropriate choice for en-
suring accuracy to the maximum polynomial degree
for the integrands in the integrals with limits 0 and
1. No compelling reason thus exists for selecting
1y = 37V%in the overall problem,; in fact, the choice
1 = po in Eq. (35) will form the basis of the delta-
function method to be discussed in Section 4d.

Four additional quadrature (or quadrature-like)
methods, all of which interpret I(r,u) as the total
radiation field, have frequently been employed.
Egs. (25)-(29) provide the plane albedos and
transmittances for plane-parallel atmospheres in
each case and v, and v, are given by Egs. (37) and
(38), respectively.

One such method was formulated by Sagan and

Pollack (1967) and subsequently clarified by Lyzenga
(1973). It assumes w; = 37V2 and uses the approxi-
mation

B = %po-m, ~371) =~ 15(1 - g);  (43)
0

consequently, the plane albedo and transmittance
do not depend on pu, and the method is thus in-
appropriate for collimated incidence. _

The second and third of these additional methods
are called two-stream and modified two-stream ap-
proximations by Irvine (1968, 1975), with deriva-
tional credit given to Chu and Churchill (1955) for
the former and to Sagan and Pollack (1967) for the
latter. Each approximation introduces a p, depend-
ence not present in the work of Sagan and Pollack
or Lyzenga by employing u, for u, where it ex-
plicitly appears in Egs. (37) and (38). The approxima-
tions differ from each other by the use in Egs. (37)
and (38) of the expression

Bi=— (44)

2(00

J p(p, —du
0
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in the two-stream method and the Sagan-Pollack
approximation (43) in the modified two-stream
method.

Difficulties common to both the two-stream and
the modified two-stream approximations are illus-
trated by the combination of Egs. (27) and (38) to
give thin-atmosphere limits that differ from the
exact answer (20) by the substitution of B, for B,.
This discrepancy can be resolved by setting w, equal
to uo everywhere in the quadrature development
so that 8, = 8, automatically. The results sum-
marized by Egs. (25)-(29), (37) and (38) are then
exactly equivalent to Coakley and Chylek’s model 1
(1975), although their derivation is entirely different.
Further discussion is given in Section 4d.

¢. Hemispheric constant method

Coakley and Chylek (1975) in their model 2 as-
sumed constant values for I(r,u) and I(r, —u), the
translation of which to the present notation yields
I(r, £u) = 2I*(7) according to Eq. (8). The integrals
in Eqgs. (10) and (11) can thus be written

(45)

1
J I(r, xp)dp = 21*

0

L0p
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1 1 1
—j [ p(p, 2p)(r,u")dp'dp
0 -1

2
=2w0[(1 ;B)I++ (1 fﬁ

B = LJ J p(p, —p')dudp'.

2w4 Iy Jo

)I—] . (46)
where

47

Comparisons of these results with Egs. (12) and (13)
give the expressions for y,, v, and v; listed in the
fifth row of Table 1.

It should be noted that the motivation behind each
of Coakley and Chylek’s two models was to produce
equations having the correct thin-atmosphere limits.
As seen from Egs. (10)-(13), (19) and (20), these
limits automatically result from the present format
because of the identification of y; with 8, and y, with
1 — B, for any of the two-stream methods that inter-
pret I(r,u) as the diffuse component of the radiation
field. Difficulties with the limits appeared in the
standard Eddington and quadrature (Liou) approxi-
mations mainly because truncated phase functions
were used in the evaluations of B,.

[

Fi1G. 4. As in Fig. 1 except the dashed curves refer to the hybrid approximation.
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FIG. 5. Asin Fig. 1 except w, = 0.8. Eddington (short dash), modified Eddington (long dash).

d. Delta-function method

The delta-function method defined in this paper
refers specifically to the substitution of u, for u, in
Eq. (35). Accordingly, the expressions for 7y, v,
and vy, are those of Egs. (37), 38) and (39), with
1 = Mo and B, = By, and are listed in the sixth row
of Table 1. The method is identical in result to model
1 of Coakley and Chylek (1975) discussed in Sec-
tion 4b, but differs substantially in the concept and
procedure of its derivation.

Eq. (35) with u; = u, has the important and useful
property of being an exact solution (Adamson, 1975)
of the radiative transfer equation if the phase func-
tion satisfies

P(p, £po) = wol(1 — g)8(n = o)
+ (1 + 281+ po)l. (48)

Since aerosols and water droplets generally scatter
very asymmetrically and show some tendencies
toward Eq. (48) for large values of the magnitude
of g, it may be advantageous for such applications
to use hybrid approximations employing the delta-
function method as a constituent part. In fact, a

hybridization of the delta-function method with the
modified Eddington approximation is the subject of
Section 4g and will be shown to give the best overall
agreement with exact calculations forg = 0.75inthe
Henyey-Greenstein phase function (see Section 5).
This hybridization differs substantially in concept
from those previously proposed.

e. Six-beam model (normal incidence)

Chu and Churchill (1955) developed a general
six-beam model that was shown both by themselves
and by Emslie and Aronson (1973) to degenerate to
a two-beam form in the case of normal incidence on
a plane-parallel scattering medium. For simplicity
and in order to correspond directly to the work of
these authors, we let I(t,u,$) represent the total
radiation field in this subsection. The translation
of their expressions to the forms of Egs. (12) and
(13) without the wF terms is straightforwardly ac-
complished and gives

4(1)025 32

, (49)
1 - (l)o(Sf + Sb + 2St)

Vi =1— w85 —
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40)025,2
1 — wo(S;+ 8, +25)°

for use in the reflectance and transmittance results
(25) and (26). The symbols S;, S, and S, are ratios
of forward, backward and transverse scattering
cross sections, respectively, to the total scattering
cross section of a single particle, so that S; + S,
+ 45, = 1.

Egs. (49) and (50) yield the difference

Yo = WS, +

(50)

4(1)0St
1 — w1 —28)

which requires S, to vanish in order to satisfy the
energy-conservation condition y; ~ ¥y, = 1 ~ w,
previously deduced from Eqs. (20) and (27) for phys-
ically plausible phase functions (as opposed to the
delta-function phase functions required to make the
six-beam model an exact solution of the radiative
transfer equation, but which led to unrealistic
photon trapping in directions parallel to the medium
surface). Moreover, the reflectance for optically
thin media can be written

vl—w:(l—wo)[w ] 51)
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4w, S 2
1 - (l)o(Sf + Sb + 28,)

R = wOT'[Sb + ] . (52)

which generally does not agree well with the exact
limit

7 !
= 7[ p(p, —Ddu.

0

(53)

For example, in the case of isotropic scatterers
(S =8, = 8, = Y%) and small v,, the reflectance of
Eq. (53) is nearly triple that of Eq. (52).

Existing six-beam models thus do not appear to be
as useful for rapid approximations as some of the
two-stream methods already considered. In par-
ticular, Chu and Churchill’s two-beam model with
St:O,Sf+Sb= l,and

] 1
S0 = 5 [ (i, —Ddu, (54)

Wy Jo

is definitely superior in that it applies for all phase
functions and approaches the proper limit for thin
atmospheres.

F1G. 6. Asin Fig. 2 except w, = 0.8. Quadrature (short dash), modified quadrature (long dash).
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! F1G. 7. As in Fig. 3 except o, = 0.8. Hemispheric constant (short dash),
delta function (long dash).

f. Similarity relations

Similarity relations are discussed by Irvine (1975)
for converting radiative-transfer results for isotropic
phase functions to the corresponding results for
anisotropic phase functions. They involve the re-
placement  of wy and 7’ in the isotropic equations
with wo(1 — g2)(1 — weg) ™t and 7'(1 — weg), respec-
tively, so that the plane albedo for thin atmospheres
can be written as follows for any of the methods
in Table 1:

TI

—(1 - g).
Mo

While this expression is not accurate for the linear

phase function p(u,u’) = we(l + 3gup’) with |g|

=< 14, as seen from the exact limit

WoT (1 _ 38#0) . (56)
2 o 2

it is preferable to the standard Eddington and two-
point quadrature (Liou) albedos that become nega-
tive as g approaches its absolute maximum value
of unity for more complex phase functions. An in-

R(thin atmos) = (55

R(thin atmos) =

formative comparison can also be made for the
Henyey-Greenstein phase function with u, =1,
for which Eq. (20) yields the exact answer
wet'(1 —g)[ 1+g ]

26 LA +gyn

R(thin atmos) =

C()()T

= (1—g)(1—%+-'->. (57)

Since better results are obtained by most of the
methods in Table 1 in the limit of thin atmospheres,
similarity relations will not be considered further.

g. Mbdiﬁed Eddington-delta function hybrid method

As mentioned in Section 4d, a combination of the
delta-function method that is accurate in the extreme
case of highly anisotropic phase functions with a
second method that is more accurate for isotropic
phase functions may provide significant improve-
ments in two-stream descriptions of aerosols and
water droplets. After a number of trial calculations,
we have concluded that the best second method
for this purpose is the modified Eddington approxi-
mation. Accordingly, a reasonable linear combina-
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tion of Egs. (30) and (35) is the following expression
that yields the Eddington approximation when

g = 0, the delta-function method when g = *1,
and satisfies Eq. (8) for the integrated intensities:

1 3up
S—— Y § [ 1 1+ —|I*
1 - (1 — ) [( g)[( 2)

+ (1 ¥ 3_2"“)1—} +g%8(u — uo)l*] - (58)

I(r, £p) =

The use of Eq. (58) in evaluating the integrals in
Egs. (10) and (11) and the subsequent comparisons
with Egs. (12) and (13) give the values of vy,, v,
and y; shown in the bottom line of Table 1.

A different delta-Eddington hybrid method has
been developed by Joseph et al. (1976). They first
assume the phase function

plu.u’) = wo[zgza(u — W)

. g2)(1 n 3g“"')] . (59)
1+¢

which peaks in the forward direction and yields
values of the first three moments (with respect to
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Legendre polynomials) of p that agree with those of
the Henyey-Greenstein function. Next they scale
the optical depth with the factor 1 — wog? in order
to remove delta-function terms from the radiative
transfer equation and finally they solve the resulting
Eddington-like equation by Eddington’s method.
This approach differs primarily in two respects from
the hybrid model proposed here: 1) approximations
to both p(u,u’) and I(r,u) are made in Joseph’s
method, whereas only I(r,u) is approximated in our
model; and 2) Joseph’s expressions cannot give cor-
rect thin-atmosphere limits for all phase functions
because of the approximation to p. We have numeri-
cally compared the two methods for a Henyey-
Greenstein function with g = 0.75 and found the
method of this paper to be generally superior over
a range of values of w, and optical thickness.

5. Numerical comparisons

The seven methods listed in Table 1 are compared
in this section for the asymmetry factor g = 0.75 in
the Henyey-Greenstein phase function

p(p,d; w',9") = wo(l — g)H{1 + g% — 2g[up’

(1= @)A1~ W' cos(d — ¢} (60)

Fi1G. 8. As in Fig. 4 except w, = 0.8. Hybrid method (dashed curves).
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F16. 9. Transmittance T as a function of u, (cosine of the angle
of incidence) and the optical thickness 7' of a plane parallel
atmosphere for the hybrid approximation (dashed curves) and
rigorous discrete-ordinate calculations (solid curves). The single-
scattering albedo w, is 0.8 and the phase function is Henyey-
Greenstein with asymmetry factor g = 0.75.

Both the phase function and this value of g were used
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nesses considered; 2) it gives the best results for
small 7' (not excluding grazing incidence); 3) it
should produce excellent Bond albedos from moder-
ately large to large optical thicknesses because the
errors for 7' = 4 and 16 in Fig. 4 will tend to cancel
in integrations of R over u,; 4) it reduces in the limit
g = 0 to the Eddington approximation, which is
assumed to be adequate for isotropic scattering; and
5) it reduces in the limits g = *+1 to the exact solu-
tion of the radiative transfer equation. Advantage
5) is especially important for the strongly directed
phase functions associated with atmospheric aerosols
[e.g., Hansen (1969) and Coakley and Chylek (1975)
used g = 0.844 as appropriate for water clouds,
the Henyey-Greenstein function being very needle-
shaped in this case]. The inadequacies in extreme
cases of the standard Eddington and two-point
quadrature (Liou) approximations are illustrated by
the results (w, = g = 1, 7’ finite)

2o
2
R(quadrature) = 12(1 — 312u)(1 — e~ 7'/*),

R(Eddington) = —; (1 - )(1 —e "), (61)

(62)
which differ substantially from the exact albedo

by Liou (1973) as reasonably representative of R = 0.

atmospheric clouds and hazes. It may be noted (see
Van de Hulst, 1968) that the ¢-integration of Eq. (60)
yields the Legendre-polynomial expansion (3) of
p(u,u') with the coefficients g, equal to g’

Figs. 1-4 show the plane albedo for conservative
scattering (wy, = 1) as a function of u and the optical
thickness 7' of a plane-parallel atmosphere. The
solid curve in each case represents results that

"agree, where comparisons are possible, to four sig-
nificant figures with the results of Liou (1973) and
that are obtained by a discrete-ordinate method
using 80— 100 Gaussian composite quadrature points.
Except for the hemispheric-constant and delta-func-
tion methods in Fig. 3 and the negative albedos for
thin atmospheres (small 7'/u,) computed from the

- standard Eddington and two-point quadrature (Liou)
approximations, none of the two-stream curves ap-
pear totally inadequate for many applications. An
interesting result from Figs. 1 and 2 is the similarity
between the standard Eddington and quadrature
curves and between the modified Eddington and
modified quadrature curves, in spite of the fact that
the expressions for y, and vy, in Table 1 are quite
different. In addition, the superiority shown for thin
atmospheres by the modified techniques in both
figures has clearly disappeared for large optical
thicknesses. '

Also inferior to the standard Eddington and quad-
rature methods for large 7’ is the hybrid approxima-
tion shown in Fig. 4. However, there is some justifi-
cation for a claim of overall superiority of the hybrid
method for the following reasons: 1) it yields rea-
sonably accurate albedos for all of the optical thick-

Figs. 5-8 are the same as Figs. 1-4 except for
wo = 0.8 and the doubling of the vertical scale.
Several conclusions are different in this example of
nonconservative scattering from what they were in
the conservative case: (i) the modified Eddington
and modified quadrature methods (Figs. 5 and 6)
maintain their superiority over the corresponding
standard approximations for all values of 7' con-
sidered; (ii) the standard Eddington and quadrature
results are again similar to each other, but neither
are they as accurate as when w, = 1 nor do they
approach the correct values for large optical thick-
nesses; and (iii) the hemispheric-constant and delta-
function methods in Fig. 7 are much improved over
what they were for w, = 1, even surpassing in some
cases the standard Eddington and quadrature
methods. Most important is the excellent agreement
shown in Fig. 8 between the hybrid and the accurate
discrete-ordinate calculations for all values of 7'.
This agreement clearly enhances the previous claim
of overall superiority for the new hybrid approxima-
tion, at least for the examples. considered, since
the competition provided by the standard Eddington
and quadrature methods for conservative scattering
does not survive the transition to w, = 0.8.

Fig. 9 shows that transmittances calculated by the
hybrid approximation for g = 0.75, w, = 0.8 and
several values of 7' are in satisfactory agreement
with rigorous results. Good agreement is also ob-
tained for the conservative case w, = 1, where con-
servation of energy requires errors in T to be of the
same order as those in R.

As a final note, analytical comparisons can be
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made (Table 1) between the expressions for y;, v,
and vy, in the various two-stream approximations.
However, except for the curious behavior of the
Eddington vy, (e.g., negative values for small o, and
failure to be directly proportional to w, so that dif-
fuse I radiation contributes in this model to changes
in I+ without additional scattering), little of apparent
consequences seems to be gained by such compari-
sons. A more profitable use of Table 1 may be the
direct determination of the generalized Kubelka-
Munk coefficients (Duntley, 1942; Mudgett and
Richards, 1971, 1972; Brinkworth, 1972) that have
been employed for many years in numerous indus-
trial applications.

6. Concluding remarks

A system of coupled differential equations has
been developed that applies to existing two-stream
approximations and thus provides a convenient
framework for direct comparisons of methods and
results. The various methods were derived and dis-
cussed within this framework and several modifica-
tions to standard techniques were introduced for the
purpose of obtaining the best results in the limit of
optically thin atmospheres (including aerosol layers).
Numerical comparisons over wide ranges of atmos-
pheric and illumination conditions showed that a
new hybrid approximation is superior overall, at
least for the examples considered, to the existing
methods. Although solutions to the radiative trans-
fer equations were obtained only for plane-parallel
atmospheres, extensions to reflecting boundaries
are easily found from appropriate manipulations
of the results presented (Chandrasekhar, 1960,
p. 279). Extensive applications of the hybrid ap-
proximation to atmospheres with aerosols, clouds
or haze should thus be feasible.
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