Lecture 8.

Terrestrial infrared radiative processes. Part 2:

K-distribution approximation.

Objectives:

- 1. K-distribution approximation (KD).
- 2. Correlated k-distribution approximation (CKD).

Required reading:

L02:4.3

Additional reading:

Fu, Q., and K.N. Liou, On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. *Journal of the Atmospheric Sciences* 49, 2139-2156, 1992.

Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono and S.A. Clough: RRTM, a validated correlated-k model for the longwave. *J. Geophys. Res.*, **102**, 16,663-16,682, 1997.

1. K-distribution method (KD).

The KD method is developed to compute the **spectral transmittance** (hence the spectral intensity and spectral fluxes) based on grouping of gaseous absorption coefficients.

NOTE: The k-distribution approach was proposed by Ambartzumian in the 30th as an alternative to the computationally expensive line-by-line methods.

• The KD method benefits from the fact that the same value of $k_{a,v}$ is encountered many times over a given spectral interval => thus to eliminate the redundancy, one can group the values of $k_{a,v}$ and perform the transmittance calculation only once for a given value of $k_{a,v}$.

Strategy:

Consider a **homogeneous** atmospheric layer. Spectral transmission is (see Lecture 7)

$$T_{\overline{\nu}}(u) = \frac{1}{\Delta \nu} \int_{\Delta \nu} \exp(-k_{a,\nu} u) d\nu$$

In the homogeneous atmospheric layer, spectral transmittance is independent of the ordering of $k_{a,v}$ in a given spectral range, i.e., the order in which the wavenumbers are summed does not matter => so let's sum them up from low to high $k_{a,v}$.

Thus, we want to replace the integration over the wavenumber by integration over k. It can be done by introducing a **normalized probability distribution function** for $k_{a,v}$ (will be denoted by k below to simplified notation):

$$T_{\overline{\nu}}(u) = \frac{1}{\Delta \nu} \int_{\Delta \nu} \exp(-k_{\nu}u) d\nu = \int_{0}^{\infty} \exp(-ku) f(k) dk$$
 [8.1]

where we set $\int_{0}^{\infty} f(k)dk = 1$

f(k) is the fraction of the spectral band with absorption coefficient between k and k+dk.

f(k) is a smooth function.

Figure 8.1 (a) A schematic of absorption line spectra at two different pressure. (b) The two probability density function f(k) associated with (a). The shaded area shows the strongest absorption.

The **cumulative probability function** can be defined as

$$g(k) = \int_{0}^{k} f(k)dk$$
 [8.2]

and g(0)=0; $g(\infty)=1$ and dg(k)=f(k)dk.

g(k) is the fraction of the spectrum with absorption coefficient below k.

NOTE: By definition, g(k) is a monotonically increasing and smooth function in k-space, Therefore, k(g), as an inverse function of g(k), is a smooth function in g-space.

Hence, the **spectral transmittance** can be written as

$$T_{\overline{v}}(u) = \frac{1}{\Delta v} \int_{\Delta v} \exp(-k_{a,v}u) dv = \int_{0}^{\infty} \exp(-ku) f(k) dk = \int_{0}^{\infty} \exp(-k(g)u) dg$$

$$= \int_{0}^{\infty} \int_{0}^{\infty}$$

Figure 8.2 (a) Absorption coefficient $k_{a,v}$ (in cm⁻¹ atm⁻¹) as a function of wavenumber in 9.6 µm ozone band (resolution of 0.05 cm⁻¹, p=30 mb, T=200K). (b) The probability density function f(k) of the absorption coefficient. (c) The cumulative probability distribution function as a function of k. (d) Same as (c) but k vs. g.

Because both g(k) and k(g) are smooth functions, the above integral can be calculated by a finite sum as

$$T_{\overline{v}}(u) = \int_{0}^{1} \exp(-k(g)u) dg \approx \sum_{i=1}^{N} \exp(-k(g_{i})u) \Delta g_{i} =$$

$$= \Delta g_{1} e^{-k_{1}u} + \Delta g_{2} e^{-k_{2}u} + \dots + \Delta g_{N} e^{-k_{N}u}$$
[8.4]

where Δg_i is the quadrature weight.

Thus, the **KD method** allows calculating the spectral transmittance as a finite weighted sum of exponent in g-space, replacing the tedious wavenumber integration that is required in the line-by-line computations.

Numerical realization of the KD method:

(see illustration below)

Consider a spectral interval Δv that contains numerous absorption lines.

Let's divide it into N intervals of Δv_j , j = 1,2,3...N

The probability distribution function can be written as

$$f(k) = \frac{1}{\Delta v} \frac{dv}{dk} = \frac{1}{\Delta v} \sum_{j} \left| \frac{\Delta v_{j}}{\Delta k} \right|$$

where Δv_{j} is the subinterval of Δv where k is a monotonic function of v.

Then the cumulative probability is

$$g(k) = \frac{1}{\Delta \nu} \sum_{i} \int_{0}^{k} \left| \frac{\Delta \nu_{i}}{\Delta k'} \right| dk' = \frac{1}{\Delta \nu} \sum_{i} \int_{0}^{k} \Delta \nu_{i}(k) = \frac{n(0,k)}{N}$$

where n(0,k) is the number of computational points that contribute to k cumulatively.

Figure 8.3 How to calculate the absorption coefficient in g-space from the known absorption coefficient in the wavenumber domain. Solid line gives absorption coefficient as a function of ν . Numbers on the right side are the data points in each Δk interval (total number N=35).

Thus by definition, $g(j\Delta k)=n(0, j\Delta k)/N$

2. Correlated K-distribution approximation (CKD).

CKD is the extension of KD for an inhomogeneous atmosphere.

Each pressure and temperature along the path has a unique $k_{a,\nu}$ spectrum.

The **CKD method** sorts each $k_{a,\nu}(p,T)$ spectrum independently to make k-distributions k(g,p,T) for each p and T.

NOTE: In practice, discrete k-distributions k_j (p_b , T_m) are made for a set of pressures p_b and temperatures T_m and interpolated to any p and T.

Overlap of gases in spectral band:

What do we do about multiple gases absorbing in one spectral band?

Overlap method #1: assumes that absorption spectra are independent

$$\int_{\Delta v} T_v^{(1)} T_v^{(2)} dv = T_{\bar{v}}^{(1)} T_{\bar{v}}^{(2)} = \sum_{i=1}^N \exp(-k_1(g_i) u_1) \Delta g_{1,i} \sum_{j=1}^M \exp(-k(g_j) u_2) \Delta g_{2,j}$$

$$T_{\bar{v}}(u_1, u_2) = \sum_{i=1}^{N} \Delta g_{1,i} \sum_{j=1}^{M} \Delta g_{2,j} \exp(-\tau_{mn})$$

where
$$\tau_{mn} = k_{1m}u_1 + k_{2n}u_2$$
,

thus we have M x N terms

Overlap method #2: introduces the mixing ratio as an additional factor, so k(g, p, T, q)

Examples of correlated k-distribution radiative transfer codes:

Fu&Liou code:

Fu, Q., and K.N. Liou, On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. *Journal of the Atmospheric Sciences* 49, 2139-2156, 1992.

Fu&Liou code is available on-line at http://snowdog.larc.nasa.gov/cgibin/rose/flp200503/flp200503.cgi

You may get a free copy of the code or run it on-line by providing the input in the theuser-friendly window.

Fu&Liou code divides shortwave into 6 bands with total 54 k's and longwave into 12 bands with total of 121 k's.

Band	Region (cm ⁻¹)	N g's	Gases	Solar Flux (W/m ²)
1	50000-14500	10	О3	619.62
2	14500-7700	8	H2O	484.30
3	7700-5250	12	H2O	149.85
4	5250-4000	7	H2O	48.73
5	4000-2850	12	H2O	31.66
6	2850-2500	5	H2O	5.80
7	2200-1900	2	H2O	Overlap method
8	1900-1700	3	H2O	
9	1700-1400	4	H2O	
10	1400-1250	4	H2O, CH4, N2O	1
11	1250-1100	3	H2O, CH4, N2O	1
12	1100-980	5	H2O, O3	1
13	980-800	2	H2O	
14	800-670	10	H2O, CO2	2
15	670- 540	12	H2O, CO2	2
16	540- 400	7	H2O	
17	400-280	7	H2O	
18	280-0	8	H2O	

RRTM code: http://rtweb.aer.com/rrtm_frame.html

Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono and S.A. Clough: RRTM, a validated correlated-k model for the longwave. *J. Geophys. Res.*, **102**, 16,663-16,682, 1997.

Table. RRTM (version 3.1) Bands and Included Species

Bar	nd Wavenumber	1050 - 96 mb	96 - 0.01 mb	Halocarbons
	Range (cm-1)			
1	10 - 350	H2O,N2~	H2O,N2~	
2	350 - 500	H2O	H2O	
3	500 - 630	H2O,CO2,N2O~ H	12O,CO2,N2O~	
4	630 - 700	H2O,CO2	CO2,O3	
5	700 - 820	H2O,CO2,O3~	CO2,O3	CCL4
6	820 - 980	H2O,CO2~		CFC11^,CFC12
7	980 - 1080	H2O,O3,CO2~	O3,CO2	
8	1080 - 1180	H2O,CO2~,O3~,N2O	~ O3,CO2~,N2O~	CFC12,CFC22^
9	1180 - 1390	H2O,CH4,N2O~	CH4,N2O	
10	1390 - 1480	H2O	H2O	
11	1480 - 1800	H2O,O2~	H2O,O2~	
12	1800 - 2080	H2O,CO2		
13	2080 - 2250	H2O,N2O,CO2~,CO	O3~	
14	2250 - 2380	CO2	CO2	
15	2380 - 2600	N2O,CO2,WV~,N2	2~	
16	2600 - 3250	H2O,CH4	CH4	

Some features of RRTM_LW:

- ✓ k-distributions are obtained directly from a line-by-line radiative transfer code, LBLRTM.
- ✓ fluxes and cooling rates can be calculated over sixteen bands in the longwave (10-3250 cm⁻¹)
- ✓ modeled molecular absorbers are: water vapor, carbon dioxide, ozone, nitrous oxide, methane, oxygen, nitrogen and halocarbons.
- ✓ fluxes calculated by RRTM agree with those computed by LBLRTM within 1.0 W/m2 at all levels, and computed cooling rates agree to within 0.1 K/day in the troposphere and 0.3 K/day in the stratosphere.