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1. Introduction 
 
A great strength of microwave radar measurements of clouds and precipitation is the 
ability to retrieve quantitative content data from the radar reflectivity factor Z.  This is 
made possible by devising algorithms based on empirical relationships between Z and 
various microphysical parameters, such as ice water content IWC or rainfall rate, or 
based on multiple sensor approaches by combining Z with other measurments.  However, 
because of the diversity of microphysical conditions found in the atmosphere, algorithms 
need to be applied only to those conditions for which they are considered valid.  In other 
words, it is first necessary to identify the target and then select an appropriate algorithm.  
The algorithm selection process depends on such basic factors as cloud phase, and also 
the hydrometeor density, shape, and size distribution.  For example, although cirrus, 
altostratus, and the upper portions of cumulonimbus clouds are all predominantly ice 
phase clouds, it is not possible to apply a single algorithm for retrieving IWC in these 
targets: cirrus generally contain only single ice crystals, altostratus likely contain low-
density ice crystal aggregates at the warmer temperatures, and cumulonimbus may 
combine ice crystals, snowflakes, rimed particles, graupel, and even hailstones.  
 
Different types of clouds are usually governed by different cloud dynamics processes and 
have different microphysical properties, which result in different cloud radiative forcings 
(Hartmann et al. 1992; Chen et al. 2000). Climate changes can result in changing 
frequency of cloud type and changing properties of a cloud type. The combination of 
them determines the change of the role of clouds in the Earth water and energy cycles. 
We might face difficulties to accurate predict future climate change until climate models 
can properly represent the processes and feedback mechanisms of controlling different 
cloud types and their properties. Therefore, classifying clouds into categories based on 
type is also an important task for cloud remote sensing and global cloud climatology 
studies. 
 
As the first step in converting the vertical profiles of Z from CloudSat into meaningful 
microphysical data quantities, we are developing an algorithm for identifying cloud type 
and precipitation from the information expected to be available.  As described here, we 
identify eight basic cloud types that are recognized by surface observers internationally.  
Currently, we are relying on CloudSat radar-only Z measurements for cloud 
identification, but further refinements will incorporate ancillary data such as are available 
from Aqua and CALIPSO. 
 
Our initial approach is to use an extended cloud dataset obtained over a 1-year period 
from the Southern Great Plains Clouds and Radiation Testbed site, which identifies these 
cloud types using a previously developed multiple remote sensor algorithm (Wang and 
Sassen 2001).  We then examine the MMCR (8.7-mm radar) data for each of the 
identified cloud types to establish relations between the maximum Zmax measured in a 
particular vertical profile and the temperature at that level.  Permissible bounds in 
temperature and Zmax for each cloud type are established.  The horizontal consistency of 
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the Zmax and horizontal cloud structure are also considered, as well as the presence of 
precipitation. 
 

2. Algorithm Theoretical Basis 
Algorithms based on different cloud spectral, textural, and physical features have been 
developed for cloud classification from satellites (Welch et al. 1992; Tovinkere et al. 
1993; Bankert 1994; Luo et al. 1995; Rossow and Schiffer 1999). The International 
Satellite Cloud Climatology Project (ISCCP) approach (Rossow and Schiffer 1999) uses 
the combination of cloud top pressure and cloud optical depth to classify clouds into 
either cumulus (Cu), stratocumulus (Sc), stratus (St), altocumulus (Ac), altostratus (As), 
nimbostratus (Ns), cirrus, cirrostratus, or deep convective clouds. Table 1 shows the basic 
features of these different cloud types (WMO 1956; Parker 1988; Uddstrom and Gray 
1996; Moran et al. 1997). However, with more long-term ground-based active and 
passive remote sensing cloud studies underway, algorithms to classify cloud type using 
these measurements are developed. Wang and Sassen (2001) developed an algorithm to 
classify clouds by combining the measurements of ground-based multiple remote sensors. 
Duchon and O’Malley (1999) studied the possibility of classifying clouds according to 
ground- based solar flux measurements. Williams et al. (1995) developed an algorithm to 
classify precipitating clouds into either stratiform, mixed stratiform, convective, and deep 
or shallow convective clouds using 915-MHz wind profile data.  
 
In this document, we present a new algorithm for CloudSat to classify clouds into either 
St, Sc, Cu, Ns, Ac, As, deep convective, or high cloud by combining space-based active 
(CPR and CALIPSO lidar) and passive remote sensing (MODIS) data. The class of high 
cloud includes cirrus, cirrocumulus, and cirrostratus, and the class of Cu cloud represents 
cumulus congestus and fair weather cumulus.  These types may be further classified into 
sub-types for IWC and LWC retrievals. 
 

 5



Table 1 Characteristic cloud features for the major cloud types derived from numerous 
studies (midlatitude). Our cloud type identification algorithm is based on many of these 
characteristics. Heights are above ground level. 
 

Cloud Class Cloud Features  
Base  > 7.0 km 
Rain no 
Horiz. Dim. 103 km 
Vert. Dim. moderate 

High Cloud 

LWP = 0. 
Base 2.0-7.0 km 
Rain none 
Horiz. Dim. 103 km, homogeneous 
Vert. Dim. moderate 

As 

LWP ~ 0, dominated by ice 
Base 2.0-7.0 km 
Rain virga possible 
Horiz. Dim. 103 km, inhomogeneous 
Vert. Dim. shallow or moderate 

Ac 

LWP > 0 
Base 0-2.0 km 
Rain none or slight 
Horiz. Dim. 102 km, homogeneous 
Vert. Dim. shallow 

St 

LWP > 0. 
Base 0.-2.0 km 
Rain drizzle or snow possible 
Horiz. Dim. 103 km, inhomogeneous 
Vert. Dim. shallow 

Sc 

LWP > 0. 
Base 0-3.0 km 
Rain drizzle or snow possible 
Horiz. Dim. 1 km, isolated 
Vert. Dim. shallow or moderate 

Cu 

LWP > 0. 
Base 0-4.0 km 
Rain prolonged rain or snow 
Horiz. Dim. 103 km 
Vert. Dim. thick 

Ns 

LWP > 0. 
Base 0-3.0 km 
Rain intense shower of rain or hail possible 
Horiz. Dim. 10 km 
Vert. Dim. thick  

Deep convective clouds 

LWP > 0. 
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a. Measurements used for cloud classification 
 
We classify clouds by using vertical and horizontal cloud properties, the presence or 
absence of precipitation, cloud temperature, and upward radiance from MODIS 
measurements. Space-based radar and lidar provide vertical cloud profiles and horizontal 
extent of clouds, which provide important information for differentiating cloud types. 
Figure 1 shows an example of CloudSat CPR measurements and cloud mask results. 
Figure 2 presents collocated CloudSat CPR and CALIPSO lidar measurements. These 
figures show horizontal and vertical variability for different types of clouds. As indicated 
in Fig. 2, lidar and radar have different advantages to measure different types of clouds 
from space. Lidar is more sensitive to detect optically thin upper tropospheric clouds and 
radar provided a better coverage for optically thick clouds. They compliment with each 
other well. However, the algorithm discussed in this document will use CloudSat CPR 
measurement only. Combined radar-lidar cloud classification product will be discussed in 
a separated document.  
 

 

b 

a 

 
Figure 1: An example of CloudSat measured radar reflectivity factor (a) and cloud mask 
results (b) from 2B-GEOPROF product. 

Index of CloudSat Profiles 
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a 

b 

c 

d 

e 

Figure 2: Colocated CloudSat radar (a), CALIPSO attenuated backscattering 
coefficient (b) and depolarization ratio (c),  ECMWF temperature profile (d), 
and CloudSat track (e). 

 
 In addition to active remote sensing data, radiances from MODIS measurements in Aqua 
could be incorporated into the algorithm. Cloud spectral, and textural features derived 
from radiance data are important supplementary information to cloud vertical and 
horizontal extents from active remote sensors. However, column integrated MODIS 
signals only provide very limited information to characterize multiple-layer clouds.  

 
Cloud temperature (T) derived from ECMWF predictions is an important cloud property. 
Using our ground-based cloud classification results (Wang and Sassen 2001), we derive 
the occurrence of different cloud types in maximum Ze  and T ( at maximum Ze height) 
space (see Fig. 3a and 3b). The features displayed in Fig. 3 are consistent with cloud 
physics and the microphysical properties of different cloud types. The rules derived from 
Fig. 3 are showed in Table 2, and are used as an initial step to develop Radar-only cloud 
classification algorithm and more complex rule based classification is developed based 
on CloudSat data (see section 4). 
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 Figure 3a: The occurrence of different type clouds in temperature and maximum Ze 

space. 
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Figure 3b: The occurrence of different type clouds in temperature and maximum Ze 

space. 
 
 
 
 
 

 10



Table 2: Tentative cloud ID rules based approximately on the properties for the 98th 
percentile of the data shown in Figure 3. 
 
Type  Zmax Precipitation Length 

(km)  
Highest Zmax 
frequency 

Other 

Cirrus <-3 dBZ, 
T < -22.5oC 

No 2 >1000 -25 dBZ @ 
 -40 oC 

 

Altostratus <10dBZ, 
-20o< T <-5 oC;  
= -30dBZ @ 
 -45 oC 

No 50 >1000 -10 dBZ @  
-25 oC 

 

Altocumulus <0 dBZ, -20o < 
T <-5 oC;  = -
30 dBZ @-35 
oC 

Yes/No 2  >1000 -25 dBZ @  
-10 oC 

Ttop >-35 oC

St  
 

<-5 dBZ,  
-15o< T <25 oC 

Yes/No 50 >1000
 

-25 dBZ @ 
10 oC (Bright 
band) 

Altitude of 
Zmax < 2 
km AGL 

Sc <-5 dBZ,  
-15o< T <25 oC 

Yes/No 2  >1000 -25 dBZ @ 
10 oC (Bright 
band) 

Altitude of 
Zmax < 2 
km AGL; 
spatially 
inhomogen
eous 

Cumulus < 0dBZ,  
-5o< T <25 oC 

Yes/No 2-25 -25 dBZ @ 
15 oC 

ΔZ>2 km 

Deep (cb) >-5dBZ, -20o < 
T < 25 oC 

Yes 10-50 10 dBZ @ 5 

oC 
ΔZ > 6 km 

Ns -10< Z <15 
dBZ,  
-25 o < T <10 o 
C 

Yes >100 +5 dBZ @ 0 

oC  
ΔZ > 4 km 

 11



b. Methodology 
 
Role-based classification methods, which assigns different threshold values to 
characteristic parameters, are simple and easy to use methods, but the results are sensitive 
to the selection of the thresholds. Instead of using Boolean logic, the proper use of fuzzy 
logic can improve the results of cloud classification (Penoloza and Welch 1996). The 
approach of using neural networks to classify cloud type in satellite imagery has shown 
recent success (Welch et al. 1992; Bankert 1994). The network is trained on selected 
spectral, textural, and physical features associated with expertly labeled samples. The 
trained network is subsequently applied to unknown cloud samples. However, these new 
classification techniques can not guarantee better performance, which depends on how 
properly designed the classifier is and the selection of features (Tovinkere et al. 1993). 
 
Combined rule-based and fuzzy logic classification approach is under development 
(Wang and Sassen 2004), but radar-only cloud classification discussed here mainly use 
rule-based classification. We use the following strategy to classify clouds. First, radar 
cloud mask results are used to find a cloud cluster according to their persistence in the 
horizontal and vertical directions. A minimum horizontal extent for a cluster is required, 
therefore, a cloud cluster permits spatially broken cloud fields. 
 
Once a cloud cluster is found, cloud height, temperature, and maximum Ze, as well as the 
occurrence of precipitation, are determined. The clouds with precipitation will be 
classified as either Ns, St, Sc, Ac, or deep convective cloud according to its vertical and 
horizontal extent, maximum Ze, and horizontal extent of the precipitation (see Table 1 
and 2). A non-precipitating cloud cluster is passed to a high, middle, or low classifier 
according to its mean cloud height and temperature. 
 

3. Algorithm Inputs 
 

3.1. CloudSat 

3.1.1. CPR-only Geometric Profiles: 
CPR-only geometric profiles, which provide horizontal and vertical cloud structure, are 
main inputs for cloud scenario classification. Inputs from CPR-only geometric profiles 
are (see Level 2 CPR-only geometric profiles product process description and interface 
control document) 
 
Ze profile 
Cloud Mask 
Geolocation 
Altitude of each radar bin 
Surface bin number 
 

 12



3.2. Ancillary (Non-CloudSat) 

3.2.1. MODIS 
At this point, we plan to use MODIS radiance data of channel 1, 2, 26, 29, 31, and 32 
(Ackerman et al. 1998) as supplementary information to CloudSat radar measurements 
for cloud scenario classification. Currently, we plan to search mainly for cloud variability 
from the MODIS radiance data orthogonal to the radar ground track. 

 
Table 3: The MODIS bands used in the MODIS cloud mask algorithm 

Band Wavelength (μm)  

1 (250 m) 0.659 Clouds, shadow 
2 (250 m) 0.865 low clouds 

26 1.375 thin cirrus 
29 8.550 cloud 
31 11.030 cloud 
32 12.020 cloud 

 

3.2.2. ECMWF 
Temperature profile 
 

3.2.3. Coastline Map 
Land or ocean flag. 
 

3.2.4. Topographical Map 
It provides altitude of surface above sea level to estimate the height of cloud above 
surface. 
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3.3 Input Variable Summary  
            (Generated by AIMS on 24 July 2007) 
 
Dimensions Used 

nray   (typical value: 36383) Number of CPR rays in one orbit. 
mod_1km   (typical value: 15) 3 x 5 MODIS grid around CPR footprint. 
Band_1KM_RefSB   (typical value: 4) MODIS SW radiance channels 
Band_1KM_Emissive   (typical value: 11) MODIS LW radiance channels 
nbin   (typical value: 125) Number of CPR bins. 
 

(1) Geodetic latitude of MODIS pixels 
Name in file: MODIS_latitude   Range: -90 to 90 
Source: MODIS-AUX 007   Missing value: -999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: mod_1km,nray   Offset: 0 
Units: degrees     MB: 2.082 
This array contains the vector of latitudes for the closest 15 pixels to the CloudSat CPR 
footprint in a 3x5 (across track x along track) grid. 
(2) Geodetic longitude of MODIS pixels 
Name in file: MODIS_longitude   Range: -180 to 180 
Source: MODIS-AUX 007   Missing value: -999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: mod_1km,nray   Offset: 0 
Units: degrees     MB: 2.082 
This array contains the vector of longitudes for the closest 15 pixels to the CloudSat CPR 
footprint in a 3x5 (across track x along track) grid. 
 (3) MODIS Earth View 1KM Reflective Solar Bands Scaled Integers Subset 
Name in file: EV_1KM_RefSB    Range: 0 to 32767 
Source: MODIS-AUX 007    Missing value: 32768 
Field type (in file): UINT(2)    Missing value operator: >= 
Field type (in algorithm): UINT(2)   Factor: 1 
Dimensions: mod_1km,nray,Band_1KM_RefSB  Offset: 0 
Units: W/(m2 str um)     MB: 4.164 
This data array contains radiances for MODIS band numbers 17-19 and 26. The full 
MODIS data has been subset to the closest 15 pixels around the CloudSat CPR footprint. 
More information can be obtained from the AN-MODIS ICD or from the MODIS web 
site at http://mcstweb.gsfc.nasa.gov/product.html. 
(4) Radiance scales for EV_1KM_RefSB 
Name in file: EV_1KM_RefSB_rad_scales   Range: to 
Source: MODIS-AUX 007    Missing value: -999 
Field type (in file): REAL(4)    Missing value operator: == 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: mod_granules,Band_1KM_RefSB  Offset: 0 
Units: --      MB: 0 
Radiance scales needed to convert unscaled radiance data to scientific values. 
(5) Radiance offsets for EV_1KM_RefSB 
Name in file: EV_1KM_RefSB_rad_offsets  Range: to 
Source: MODIS-AUX 007    Missing value: -999 
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Field type (in file): REAL(4)    Missing value operator: == 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: mod_granules,Band_1KM_RefSB  Offset: 0 
Units: --      MB: 0 
Radiance offsets needed to convert unscaled radiance data to scientific values. 
(6) Reflectance scales for EV_1KM_RefSB 
Name in file: EV_1KM_RefSB_ref_scales   Range: to 
Source: MODIS-AUX 007    Missing value: -999 
Field type (in file): REAL(4)    Missing value operator: == 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: mod_granules,Band_1KM_RefSB  Offset: 0 
Units: --      MB: 0 
Reflectivity scales needed to convert unscaled radiance data to scientific values. 
 (7) Reflectance offsets for EV_1KM_RefSB 
Name in file: EV_1KM_RefSB_ref_offsets   Range: to 
Source: MODIS-AUX 007    Missing value: -999 
Field type (in file): REAL(4)    Missing value operator: == 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: mod_granules,Band_1KM_RefSB  Offset: 0 
Units: --      MB: 0 
Reflectivity offsets needed to convert unscaled radiance data to scientific values. 
(8) MODIS Earth View 1KM Emissive Bands Scaled Integers Subset 
Name in file: EV_1KM_Emissive    Range: 0 to 32767 
Source: MODIS-AUX 007    Missing value: 32768 
Field type (in file): UINT(2)    Missing value operator: >= 
Field type (in algorithm): UINT(2)   Factor: 1 
Dimensions: mod_1km,nray,Band_1KM_Emissive  Offset: 0 
Units: W/(m2 str um)     MB: 11.45 
This data array contains radiances for MODIS band numbers 20 and 27-36. The full 
MODIS data has been subset to the closest 15 pixels around the CloudSat CPR footprint. 
More information can be obtained from the AN-MODIS ICD or from the MODIS web 
site at http://mcstweb.gsfc.nasa.gov/product.html. 
(9) Radiance scales for EV_1KM_Emissive 
Name in file: EV_1KM_Emissive_rad_scales  Range: to 
Source: MODIS-AUX 007    Missing value: -999 
Field type (in file): REAL(4)    Missing value operator: == 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: mod_granules,Band_1KM_Emissive  Offset: 0 
Units: --      MB: 0.001 
Radiance scales needed to convert unscaled radiance data to scientific values. 
(10) Radiance offsets for EV_1KM_Emissive 
Name in file: EV_1KM_Emissive_rad_offsets  Range: to 
Source: MODIS-AUX 007    Missing value: -999 
Field type (in file): REAL(4)    Missing value operator: == 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: mod_granules,Band_1KM_Emissive  Offset: 0 
Units: --      MB: 0.001 
Radiance offsets needed to convert unscaled radiance data to scientific values. 
 (11) Seconds since the start of the granule. 
Name in file: Profile_time    Range: 0 to 6000 
Source: 2B-GEOPROF 011    Missing value: 
Field type (in file): REAL(4)    Missing value operator: 
Field type (in algorithm): REAL(4)   Factor: 1 
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Dimensions: nray     Offset: 0 
Units: seconds      MB: 0.139 
Seconds since the start of the granule for each profile. The first profile is 0. 
(12) UTC seconds since 00:00 Z of the first profile 
Name in file: UTC_start     Range: 0 to 86400 
Source: 2B-GEOPROF 011    Missing value: 
Field type (in file): REAL(4)    Missing value operator: 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: <scalar>     Offset: 0 
Units: seconds      MB: 0 
The UTC seconds since 00:00 Z of the first profile in the data file. 
(13) TAI time for the first profile. 
Name in file: TAI_start     Range: 0 to 6e+008 
Source: 2B-GEOPROF 011    Missing value: 
Field type (in file): REAL(8)    Missing value operator: 
Field type (in algorithm): REAL(8)   Factor: 1 
Dimensions: <scalar>     Offset: 0 
Units: seconds      MB: 0 
The TAI timestamp for the first profile in the data file. TAI is International Atomic Time: 
seconds since 00:00:00 Jan 1 1993. 
(14) Spacecraft Latitude 
Name in file: Latitude     Range: -90 to 90 
Source: 2B-GEOPROF 011    Missing value: 
Field type (in file): REAL(4)    Missing value operator: 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: nray     Offset: 0 
Units: degrees      MB: 0.139 
Spacecraft Geodetic Latitude. 
(15) Spacecraft Longitude 
Name in file: Longitude     Range: -180 to 180 
Source: 2B-GEOPROF 011    Missing value: 
Field type (in file): REAL(4)    Missing value operator: 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: nray     Offset: 0 
Units: degrees      MB: 0.139 
Spacecraft geodetic longitude 
(16) Range to the CPR boresight intercept with the geoid 
Name in file: Range_to_intercept    Range: 600 to 800 
Source: 2B-GEOPROF 011    Missing value: 
Field type (in file): REAL(4)    Missing value operator: 
Field type (in algorithm): REAL(4)   Factor: 1 
Dimensions: nray     Offset: 0 
Units: km      MB: 0.139 
Range from the spacecraft to the CPR boresight intercept with the geoid. 
(17) Digital Elevation Map 
Name in file: DEM_elevation    Range: -9999 to 8850 
Source: 2B-GEOPROF 011    Missing value: 9999 
Field type (in file): INT(2)    Missing value operator: == 
Field type (in algorithm): INT(2)    Factor: 1 
Dimensions: nray     Offset: 0 
Units: meters      MB: 0.069 
Elevation in meters above Mean Sea Level. A value of -9999 indicates ocean. A value of 
9999 indicates an error in calculation of the elevation. 
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(18) Data status flags 
Name in file: Data_status     Range: 0 to 127 
Source: 2B-GEOPROF 011    Missing value: 
Field type (in file): UINT(1)    Missing value operator: 
Field type (in algorithm): INT(2)    Factor: 1 
Dimensions: nray     Offset: 0 
Units: --      MB: 0.035 
This is a bit field that contains data status flags: 
 
Bit 0: missing frame (0=false, 1=true) 
Bit 1: SOH missing (0=false, 1=true) 
Bit 2: GPS data valid (0=false, 1=true) 
Bit 3: 1 PPS lost (0=false, 1=true) 
Bit 4: Star tracker 1 (0=off, 1=on) 
Bit 5: Star tracker 2 (0=off, 1=on) 
Bit 6: Coast (0=false, 1=true) 
Bit 7: NISC (0=false, 1=true) 
(19) Land Sea Flag 
Name in file: Navigation_land_sea_flag   Range: 1 to 3 
Source: 2B-GEOPROF 011    Missing value: 
Field type (in file): UINT(1)    Missing value operator: 
Field type (in algorithm): INT(2)    Factor: 1 
Dimensions: nray     Offset: 0 
Units: --      MB: 0.035 
Flag indicating whether spacecraft is over land or sea: 
 
1 = land 
2 = ocean 
3 = coast 
(20) Radar Reflectivity Factor 
Name in file: Radar_Reflectivity    Range: -40 to 50 
Source: 2B-GEOPROF 011    Missing value: -88.88 
Field type (in file): INT(2)    Missing value operator: == 
Field type (in algorithm): REAL(4)   Factor: 0.01 
Dimensions: nbin,nray     Offset: 0 
Units: dBZe      MB: 8.674 
Radar reflectivity factor Ze is calculated with the echo power and other input data as 
described in Li and Durden (2001) 
(21) CPR Cloud Mask 
Name in file: CPR_Cloud_mask    Range: 0 to 40 
Source: 2B-GEOPROF 011    Missing value: -9 
Field type (in file): INT(1)    Missing value operator: == 
Field type (in algorithm): INT(1)    Factor: 1 
Dimensions: nbin,nray     Offset: 0 
Units:       MB: 4.337 
Each CPR resolution volume is assigned 1 bit mask value: 
 
0 = No cloud detected 
1 = likely bad data 
5 = likely ground clutter  
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5-10 = week detection found using along track integration. 
20 to 40 = Cloud detected .. increasing values represents clouds with lower chance of a 
being a false detection. 
 (22) Height of range bin in Reflectivity/Cloud Mask above reference surface (~ 
mean sea level). 
Name in file: Height    Range: -5000 to 30000 
Source: 2B-GEOPROF 011   Missing value: -9999 
Field type (in file): INT(2)   Missing value operator: == 
Field type (in algorithm): INT(2)   Factor: 1 
Dimensions: nbin,nray    Offset: 0 
Units: m     MB: 8.674 
Height of the radar range bins in meters above mean sea level. 
(23) Location of Surface Bin as determined by 1B CPR algorithm. The value here is 
shifted (as Height). 
Name in file: SurfaceHeightBin   Range: 1 to 125 
Source: 2B-GEOPROF 011   Missing value: -1 
Field type (in file): INT(1)   Missing value operator: == 
Field type (in algorithm): INT(1)   Factor: 1 
Dimensions: nray    Offset: 0 
Units:      MB: 0.035 
Location of Surface Bin as determined by 1B CPR algorithm. The value here is shifted 
(as is the Height matrix) so bins in neighboring rays are about the same height. 
(24) MODIS scene characterizations 
Name in file: MODIS_scene_char   Range: 0 to 9 
Source: 2B-GEOPROF 011   Missing value: -9 
Field type (in file): INT(1)   Missing value operator: == 
Field type (in algorithm): INT(1)   Factor: 1 
Dimensions: nray    Offset: 0 
Units:      MB: 0.035 
This data includes MODIS pixel cloudiness characterization using cloudmask bit tests. 
See Table 3 in GEOPROF documentation for a detailed specification. 
(25) MODIS scene variability 
Name in file: MODIS_scene_var   Range: 0 to 5 
Source: 2B-GEOPROF 011   Missing value: -9 
Field type (in file): INT(1)   Missing value operator: == 
Field type (in algorithm): INT(1)   Factor: 1 
Dimensions: nray    Offset: 0 
Units:      MB: 0.035 
MODIS scence variability -variability of classification assigned to the 1 km MODIS 
pixels that compose the CloudSat footprint and immediately adjacent region. See Table 5 
for a detail specification. 
 (26) MODIS 250m Cloud Fraction 
Name in file: MODIS_Cloud_Fraction  Range: 0 to 100 
Source: 2B-GEOPROF 011   Missing value: -99 
Field type (in file): INT(1)   Missing value operator: == 
Field type (in algorithm): INT(1)   Factor: 1 
Dimensions: nray    Offset: 0 
Units:      MB: 0.035 
MODIS 250m cloud fraction included cloud fraction calculated with MODIS 250m 
pixels. 
(27) Atmospheric pressure 
Name in file: Pressure    Range: to 
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Source: ECMWF-AUX 008   Missing value: -999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nbin,nray    Offset: 0 
Units: Pa     MB: 17.349 
(28) Temperature 
Name in file: Temperature   Range: to 
Source: ECMWF-AUX 008   Missing value: -999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nbin,nray    Offset: 0 
Units: K     MB: 17.349 
(29) Specific humidity 
Name in file: Specific_humidity   Range: to 
Source: ECMWF-AUX 008   Missing value: -999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nbin,nray    Offset: 0 
Units: kg/kg     MB: 17.349 
(30) Surface pressure 
Name in file: Surface_pressure   Range: to 
Source: ECMWF-AUX 008   Missing value: -999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nray    Offset: 0 
Units: Pa     MB: 0.139 
(31) Skin temperature 
Name in file: Skin_temperature   Range: to 
Source: ECMWF-AUX 008   Missing value: -999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nray    Offset: 0 
Units: K     MB: 0.139 
Skin temperature. 
(32) Two-meter temperature 
Name in file: Temperature_2m   Range: to 
Source: ECMWF-AUX 008   Missing value: -999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nray    Offset: 0 
Units: K     MB: 0.139 
Two-meter temperature. 
 

3.4.  Control and Calibration 
 
No control and calibration are necessary for this algorithm. 
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4. Algorithm Summary 
 
First algorithm performs clustering analysis to group individual cloud profile into a cloud 
cluster, then applies rules and classification methods to classify it into different cloud 
types. The details of the algorithm are also discussed here. 
 

4.1. Cloud clustering analysis 
 
Cloud layer:  CloudSat bins with significant cloud mask values (≥30) and vertically 
connected are regarded as a cloud layer. 
Cloud Cluster: a group of cloud layers horizontally connected with a similar vertical 
coverage is analyzed together as a cloud cluster.  
 
Because of the strong variability of clouds, it is difficult to apply a classification 
algorithm directly to an individual radar profile.  Different types of clouds have different 
horizontal and vertical extents. The cloud clustering analysis provides cloud horizontal 
and vertical extent features. Cloud layer structure is first determined by using bins with 
significant cloud mask values (≥30). Then we cooperate bins with mask values between 
20 and 30 into the identify layer structure.  The bins connected to first layer based are 
included as the first layer and the bins directly above top layer are regarded part of top 
layer. For the bins between two layers will be treated according to their connections to 
the exiting layers. If they only connect lower or higher layer, they will be included to 
corresponding connected layer. If they fill the gap between two layers, we decide whether 
to combine two layers into one layer or include them into one layer and keep two layer 
structure based on signal intensities and height of existing layers.  If these weaker bins 
form an isolated layer between two existing layers, they will not be included for analysis. 
If there is no cloud layer identified with mask values ≥30, new layer structure is simply 
determined based on bins with mask values between 20 and 30.  
 
For some cloud types, such as Cu and Sc, horizontal extent of a cloud element may be 
small. Therefore, it is necessary to set a minimum horizontal extent for a cloud cluster to 
capture the inhomogeneity of clouds. Currently, 30 km horizontally is search for broken 
clouds normally.   A search for a cloud cluster is terminated when a large change in cloud 
vertical or horizontal structures is detected, such as, cloud evolve from anvil to deep 
convective core, cloud base change from low level to middle level or form middle level 
to low or high level or from high to middle, and sharp cloud thickness change. A 
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CloudSat granule may be divided into a different number of cloud clusters varying with 
cloud type presented in the granule. 
 
The following variables are calculated for each cluster and used for cloud type 
classification: 

Maxtop: maximum top height for the cloud cluster, km, AGL 
meantop: mean cloud top height, km,AGL 
devtop: Standard deviation of cloud top height 
meantopT: mean cloud top temperature 
mintopT: lowest cloud top temperature 
meanbase: mean cloud base height, km, AGL 
devbase: Standard deviation of cloud base height 
meanbaseT: mean cloud base temperature, degree 
minbase: lowest cloud base for the cloud cluster 
Max10db_H: Maximum 10 dBZ height for the cloud cluster, AGL 
meanDz: mean cloud thickness, km 
maxDz: maximum cloud thickness 
meanlat: the mean latitude for the cloud cluster 
meanze: mean maximum Ze (maximum Ze is calculated for each profile), dBZ 
devZe: standard deviation of maximum Ze 
maxZeV: maximum Ze value of the cloud cluster 
meanHeight: mean maximum Ze height 
meantemp: mean temperature at the maximum Ze height 
length: Cluster horizontal length, km 
Index_precipitaiton: number of precipitating cloud profiles 
Cloud_F: Cloud fraction 
Inhomo: Cloud inhomogeneity measured by standard deviation of maximum Ze 

divided by mean maximum Ze both in unit of mm6/m3 
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4.2. The flowchart of cloud scenario classification  
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Figure 4: The high level flowchart of cloud scenario classification algorithm 
 
 
Figure 4 shows the general structure of CloudSat scenario classification algorithm. Once 
a cloud cluster is found, cloud height, temperature, and maximum Ze, as well as the 
occurrence of precipitation apparenntly reaching the surface, are determined. The clouds 
with precipitation will be classified as either Ns, St, Sc, Cu Ac, or deep convective 
according to their vertical and horizontal extent, maximum Ze values and height, 
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horizontal extent, and strength of the precipitation [Wang and Sassen, 2001]. A non-
precipitating cloud cluster is passed to a high, middle, or low classifier according to its 
mean cloud height and temperature, cloud base and top height (and its variability), and Ze 
magnitude and spatial variability. More detail information for the four classifier boxes in 
this flowchart is presented in section 4.4.  
 
 

4.3. Precipitation Identification 
 
 

        Precipitation identification is an important step in the classification scheme. Here we 
summary the principles used in the algorithm. Precipitation has larger size comparing 
with cloud particles; therefore the reflectivity factor of precipitation is stronger than that 
from clouds. However, space-borne cloud radar does not always detect strong signal form 
precipitation because of attenuation of clouds and precipitation it self.  In the case of 
strong attenuation of clouds and precipitation, the signal from surface will also be 
attenuated. Figure 5 gives an example from airborne 94 GHz cloud radar measurements 
24 June 1996. The attenuation of cloud and precipitation can reduce surface signal up to 
30 dBZ. 

   Figure 5. Example of airborne 94 GHz cloud radar measurements (b) on 24 
June 1996. a) shows simulated CloudSat radar signal according to the 
measurements shown in b), and c) shows the surface return. 
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        Therefore, we combine the maximum reflectivity in lower radar gate and attenuation 
of cloud and precipitation to identify the occurrence of precipitation. Figure 6 shows the 
frequency distribution of the maximum radar reflectivity factor within 2 km above 
surface from MMCR measurements at different CART sites and airborne 94 GHz cloud 
radar measurements. Each CART site result generated from more than one year data and 
airborne radar data is from four field experiments (http://abyss.ecs.umass.edu/acr-
web/data.html).  There are obvious multi-mode distributions except NSA data, which 
reflects the contributions of clouds, drizzle and precipitation.  There are local minimums 
between –10 and 0 dBZ, and vary from site to site. The existence of local minimums 
indicates that we can select a threshold to distinguish precipitation from cloud though it is 
not accurate every time. Boundary cloud from NSA site is different than other site due to 
relative cold environment.  

 
 

Figure 6: The frequency distribution of the maximum radar reflectivity factor 
within 2 km above surface from MMCR measurements at SGP, NSA and 
TWP sits and airborne cloud radar measurements. The vertical dashed line 
indicates the –26 dBZ. 

 
One possible challenge to use the maximum radar reflectivity in low radar bins to identify 
precipitation is the effect of surface return signal and limited vertical resolution of 
CloudSat. Figure 7 shows an example of airborne cloud radar measurements of boundary 
clouds. The simulated CloudSat signals indicate that the surface signal makes cloud 
detection and precipitation identification in first two bins above surface difficult.  
CloudSat data indicated that the closest four bins above surface are contaminated by 
surface cluster although bin three and four above surface could be recovered under 
favorable conditions.  Currently, CloudSat has implemented an approach to recover these 
bins when it is possible. 
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c

 
Figure 7. Same as Fig.5 expect for 3 July, 1999 

 
 

To study the reliability of using CloudSat signal around 1 km above surface to detect 
occurrence of precipitation at surface, the radar signal correlation between 1 km and 
near surface (~100 m) are presented in Fig. 8 based on ARM observations at tropical 
(TWP), midlatitude (SGP), and Polar (NSA) regions. It is clear that radar signal at 
these two levels are highly correlated though there are slightly differences among 
sites. For example, when signals at 1 km reach 0 dBZ, near surface signals are 
expected higher than -10 dBZ at ~90% of time over the TWP and NSA sites. 
Compared with TWP and NSA sites, the SGP site has ~ 10% higher chance to 
observe smaller Ze than -10 dBZ based on Fig. 8.  The coarse resolution of CloudSat 
is supposed to make situations better.   
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Figure 8. The correlation of near surface radar signals with signals at 1 km based 
on ARM surface observations at three different climate regions 

 
 
Based on above discussion, the following temperature dependent threshold (see Fig. 9) is 
selected to detect the occurrence of precipitation based on first non-surface contaminated 
bins (3 to 5 bins above surface). To cover heavy precipitation cases, surface signal 
intensities are further evaluated to find strong attenuation period due to precipitation.  
Surface signals are determined by many factors and surface type is a main one. Over 
water, surface signal is mainly controlled by wind speed (Haynes and Stephens 2007). 
Over land, surface signal are affected by soil type and moisture and vegetation. Figure 10 
presents the frequency distributions of CloudSat surface bin signals over land and ocean, 
respectively.  It is clear that the distributions over ice an ocean are narrow than land. 
Figure 10 provides a general guidance on how to set up thresholds to use surface signals 
to detect strong attenuation in CloudSat signals due to precipitation. First, it is hard to 
find a single threshold for global application. Therefore, regional surface reference 
signals are determined by finding the minimum surface signal under clear or mid- or 
high-level cloud conditions within 30 km of the profiles to be analyzed.  If there is no 
clear or mid- or high-level cloud condition found within 30 km, the reference signal for 
the nearby one will be used.  The regional reference signal minus 6 is used as a threshold 
to identify profiles with strong attenuation near surface.  To minimize the false detection, 
maximum Ze within 25 bins above surface also require large than selected thresholds 
depending on surface signals.    
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Figure 9, Ze threshold for precipitation detection based on near  
surface CloudSat signal intensity and air temperature.  

 
               
 
 
 
 
 

         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10, Surface maximum reflectivity distribution as a function latitude based 

on one month CloudSat data: top for measurements over land and bottom 
for measurements over ocean. High occurrence regions represent surface 
return under clear, non-precipitation, or weak precipitation conditions.  
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The phase of precipitation can be approximately discriminated from temperature profile 
and the occurrence of bright band in radar signal. Figure 11 shows the comparison of two 
different phase precipitation and related temperature profiles. If the bright band is 
identified and/or the temperature near surface is at least warmer than 2 degrees the 
precipitation is regarded as liquid.  Otherwise, the precipitation is labeled as solid 
precipitation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 shows the comparison of two different phase precipitation and related 
temperature profiles. Top: solid precipitation and temperature below zero 
degree; and bottom liquid precipitation with bright band. 

 
After precipitation identification, first cloud layer above surface will be analyzed for 
possible occurrence of drizzle. The most reliable way to identify drizzle in boundary 
layer clouds is to use vertical Ze profile. When no drizzle presented, Ze values increase 
with height; when drizzle presented Ze values is normally decrease with height. 
Unfortunately, we can not apply this to CloudSat data for drizzle identification due to the 
500 m vertical resolution of CloudSat data (over sampled at 240 m vertical resolution). 
Therefore, we have to rely on the magnitude of CloudSat Ze measurements only. 
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 There are different thresholds (ranging from -20 to -10 dB) suggested for indicating 
drizzle occurrence based on ground-based or airborne measurements from different 
regions (Wang and Geerts, 2003; Matrosov et al. 2004).  However, we have to consider 
the vertical resolution differences between CloudSat and group-based or airborne radar 
systems if we want to use any suggested thresholds. To select a proper threshold, we 
study the maximum Ze distributions for marine clouds with cloud top below 3.5 km, 
which are presented in Fig. 12. It is clear that maximum Ze show a multi-mode 
distribution which represents contributions from cloud, drizzle, and precipitation. 
Between -25 and -10 dBZ, there is a local minimum around ~ -18 dBZ, which only show 
a slight dependency on regions and seasons.  Based on these statistics, -18 dBZ is 
selected to detect possible drizzle occurrence based on maximum Ze for the boundary 
layer clouds.  

 
 Figure 12. Maximum Ze distribution for marine clouds with cloud top below 3.5 

km over 8 Sc cloud occurrence regions (color coded). The Ze values presented 
here are non-attenuation corrected CloudSat measurements from June 2006 to 
April 2007. 

Max Ze 

 

4.4. Role-based Cloud Classification  
 
The challenge part of the role-based cloud classification is selected threshold values for 
different parameters to design a decision tree. The flowchart given in Fig. 4 represents 
high-level decision tree structure.  The logic in each box is turned based on CloudSat 
data, which is more complex than roles given in table 2.  With the vertical structure of 
clouds identified, it is relatively straightforward to put a cloud layer into low, middle, or 
high cloud levels [WMO, 1965]. However, precipitation makes it impossible to infer 
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cloud base heights of precipitating clouds, which complex situation slightly. Typical 
CloudSat images for different cloud types are showed in Fig. 13. It is clear that there are 
there are distinguishable features among them. The key of the algorithm is to find 
effective ways to distinguish cloud types in the same level and to consider their 
differences over different latitudes or seasons.  

High 

 
As 

 
Ac 

 
Sc and St 

 
Cu 

                             
Ns 

 
Deep 
Convective 

 
  

Figure 13.  Typical examples of different cloud types observed by CloudSat. 
Horizontal axis represents distance along CloudSat track, and vertical axis 
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represents cloud altitude. Surface height is indicated by strong signals (red or 
white colors) except regions strongly attenuated by precipitation. 

 
Middle level clouds include Ac and As. The main difference between them is cloud 
composition. As is mainly composed ice crystals though water droplets could be present. 
On the other hand, Ac is mainly composed water droplets though ice crystals could be 
present and fall as virga. This microphysical property difference results in a significant 
difference in Ze [Wang and Sassen, 2001], which helps to separate these two types of 
clouds.     
 
Both Ns and deep convective clouds could extend from near the surface to the upper 
troposphere in term of hydrometer profiles from radar measurements. The main 
difference between these two main precipitating clouds is their precipitation intensity. 
Compared with Ns clouds, deep convective clouds generally produce heavier 
precipitation, which is reflected by weak surface returns due to the rainfall attenuation at 
94 GHz. Another difference between them is their formation mechanisms. Ns is most 
often formed as a result of the slow ascent of extensive layers. On the other hand, deep 
convective clouds are normally associated with strong updrafts during formation.  
Therefore, hydrometer vertical distributions are different between them, and deep 
convective clouds usually have stronger signals near cloud top then Ns clouds.  Cumulus 
congestus could also produce strong precipitation.  They are separated from Ns by their 
horizontal length scale and whether convective cells are present. The difference between 
cumulus congestus and deep convective clouds is mainly based cloud top height.   
 
If a cloud cluster including a precipitating profile and mean cloud top height higher than 
2.5 km, this cloud cluster will be directed into precipitating cloud classifier.  First, 
precipitation intensity is analyzed to set values for Intense_prep_flag and 
Very_intense_prep_flag based on surface signals. If the surface signal of a profile is 
smaller than 20 dBZ over ocean or 10 dBZ over land,  Intense_prep_flag will be 
increased by 1. If surface signal is smaller than -10 dBZ,  Very_intense_prep_flag will be 
increased by 1.  The next task is to judge whether the cluster is Ac clouds, which is 
characterized by flat middle level top (between 2.9 and 7 km), light precipitation 
(Intense_prep_flag <1), large cloud base change, and small mean maximum Ze ( <-6 dB, 
maximum Ze is calculated for each profile).  If the precipitating cloud  cluster is not a Ac, 
the cluster will be analyzed  to decide whether it is need to separate into before, after, and 
during precipitation periods. The reason for this step is that a precipitating cluster could 
include a large portion non-precipitating cloud profiles.   Before and after precipitation 
periods will be redirected to low, middle, or high cloud classifier according to cloud base 
and top heights. The decision tree for the precipitation period is given in Fig. 14.  To 
better separate deep convective clouds and Ns and to identify well developed Cu 
congestus, two variables, deep_flag and Conv_flag, are assigned to have value 0 or 1 
based on the following logics to characterize the vertical structure of Ze.  
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Decision tree for deep_flag: 
 
 
 
 
 
 
 
 
 
 
 
 

deep_flag=0 

Abs(meanlat)< 23.5  

[(maxtop > 12) and (Max10db_H>8.2) ] or  
[(maxtop > 14) and (meanDz>12)] or 
[(meantop >8.5) and (Max10db_H>8.4)] 

[(maxtop > 10) and (Max10db_H>7.2) ] or  
[(Max10db_H>7.8) ] or 
[(maxtop - Max10db_H < 1.) and (Max10db_H>7.5] 

Yes 
No 

Yes 

Yes 
deep_flag=1 

 
 
Decision tree for Conv_flag: 
 

Conv_flag =0 deep_flag>0 

Yes

Conv_flag =1 

[(intense_prep_flag > 5) or (maxzeV > 14.) or (meanZe > 4.)]  
and [(length < 80.) or (devtop > 0.5) or (meanZe > 4.)] 
and [meantop - Max10db_H < 0.34]  
and [Max10db_H>3] and [meanDz <5.] 

Yes 
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MeanbaseT > - 6  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: The decision tree for precipitating cloud classification.  
 

(maxtop < 4.5 ) and (meanDz < 2.5) 

(Meantop < 3.5) and (max10dB_H < 3.) and 
[(intense_prep_flag < 1) or (length >100)] and 

(very_intense_prep_flag <1) 

St

Yes No [maxtop < 3.9] and [meanDz < 2.5] 
and [meanbase < 1.5] and [(length > 

50) or (maxZeV < 10.)] 
(meanDz < 2.6) and (meanbase < 2) 

and (maxtop < 4.5 )  

Yes Sc

{[ index_precip*1.4 >50] or [(maxDz < 8.) and (length >60) ] or [(maxDz >7) and 
(max10db_H < 3.5) and (length >30) ] or [(meanDZ < 10.2)  and (length >45) 
and (meanZe < 10) and (max10dB_H < 4.2)]  and [meanDZ < 8.2)  and (length 
>25) and (meanZe < 10) and (max10dB_H < 2.) ] } 

and {[Very_intense_flag < 1] or [(max10dB_H < 5) and (Very_intense_flag >0)]} 
and {[index_precip/length*1.4 > 0.3] or [(meanDz >5) and (length ≥ 270)]}  
and {[conv_flag < 1] or [(length > 100) and (meanbase <1.8)]} 
and {deep_flag <1} 

Cu

Cu 

{[(meanDz ≤ 6.) and (length < 75)] or [(meanDz ≤ 3.) 
and (length < 50)]} and ( meanZe+ devZe ≥ 6) and 
(maxtop  ≤ 7.) and (devTop ≥ 0.3) 

Sc

Ns 

Yes 

[meanDz < 2.5] and 
[meanbase > 1.8] 

No 

No 
{[ (meantop-meanheight <2.1) and (meanZe < 5.) and (devtop <0.3)] or 
[(meanTop > 4.) and (maxZeV <10.) and (meanZe <-1) and (maxtop < 7)] or 
[(meanTop > 4.) and (maxZeV < 7.) and (meanZe < 0.) and (maxtop < 7)] or 
[(meanDz < 5.) and (meanZe < 0.5) and (devTop < 0.45)] or [(meantop > 3.) 
and(meanDz >2.5) and(meanDz< 4.5) and (devTop < 0.3)] or [(meantop>3.)and 
(meanDz>2.5) and(meanDz<4.5) and (devTop < 0.30) and (Length >100)]}  
and {conv_flag < 1}  

[meanDz < 5.] or [( meanDz < 6.) 
and (mintopT > -15)] Cu

Deep Convective cloud 
No 

Ac

Yes 
No

No

Yes 

Yes 

NoNo

No

No

No

Yes

Yes

Yes

NS

[(length<50) and (meanZe+devZe > 
7)]  or [(length<70) and 
(meanZe+devZe > 12)] or 
[(conv_flag > 0) and (meanDz < 3.)] 

Yes 

Yes

Ac
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The decision trees for low, middle, and high cloud classifier are given below.  
 
The decision tree of high cloud classifier: 
 
 
 
 No 

[ (meanZe < 0.05) and (meanTemp < -22.5) and (minbase > 5) and 
(meanDz < 6.1) and (meanbase >5.5)] or [ mean_base > 10] 

High 
Cloud 

Yes

 Meanbase > 2.0 Yes As 
No 

 YesMeanDz < 6. Cu
 

No 
Deep Convective Clouds 

 
 
The decision tree of low cloud classifier: 
 

No

Yes As (meanlat < -65) and (meanbaseT < -30) and (meantopT <-35.)  
 
 CuYesCloud_F <0.25  
 No
 Yes St [(Cloud_F  > 0.25) or (inhomo <0.5)] and [maxtop <3] and [meanbase 

<1.8] and [intense_Prep_flag < 1]  
 No
 

Yes Ac 
[inhomo > 0.3] and [maxtop >3] and [mintopT > -35.] and [meanze <2] and 

[meanDz <8.] and {[ meanbase > 1.8] or [(meanbase >1.0) and (maxtop >3.5)] 
or [(meanZe <-5.) and (maxtop > 3.5) and (meanDz >2.)]} 

 
 
 No

Yes As(meanDz > 8) and (meanZe < 0.)  
 

No 
Yes[(MeanDz > 2.) or (intense_Prep_flag < 1) or (maxtop ≥3)] and 

[meanDz <7.] and [meanZe > 0] and [length <100] 
 Cu 
 
 No
 Yes[(MeanDz > 2.) or (maxtop ≥4.)] and [meanDz <7.] and [meanZe > -5] 

and [length > 56] 
Ns 

 
 No
 Yes(meanDz > 8)  Deep Convective Clouds  
 No
 Sc  
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The decision tree of middle cloud classifier: 
 
 (meanbaseT >-30) and {[(meanheight < 2.2) and (maxtop < 3) ] or [ 

(meanbase <2) and (maxtop <3.)] or [(meanbase < 1.85) and (maxtop 
<4.) and (meanDZ < 2.) and (meantop < 3.2)] } 

Yes Sc  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An example of results is given in Figure 15. The flight track of CloudSat is depicted on 
the merged satellite IR image between 60 S and 60N in Fig. 15a. The southern end of the 
track corresponds to the left edges of Fig. 15b-e. The calibrated CPR Ze is presented in 
Fig. 15d (in terms of dBZ=10 log Ze), which together with the cloud mask (Fig. 15c) are 
the basic inputs of the algorithm. Figure 15e presents the ECMWF temperature profiles 
under the CloudSat ground track, which are used to determine cloud temperature. The 
corresponding cloud type classification results are presented in Fig. 15b.  As indicated in 
Fig. 15a, CloudSat fortuitously flew directly over hurricane Ileana, which is identified by 
the deep convective clouds in Fig. 15b.  
 

No
Yes St  (meanbase < 2) and (meanDz < 1) and (maxtop-mintop <1.5) and 

(meanbaseT >-30) 

No Yes
Ns(meanbase < 1.2) and (meanDz > 4.5) and (length >52) 

No

Cu Yes(meanbaseT >-30)  and (meanbase <2.) and {[Cloud_F < 0.25] or 
[(Cloud_F < 0.5) and (meantemp >-5)]} 

No

Ac 
Yes

(meanbaseT >-30)  and  
{[(meanbase >1.8) and (meanBaseT >5) and (meanDz < 2.7) and (meanZe < 0) ] 
   or [(meanbase >1.8)  and (meanbase < 7.) and (〈 ( meanDz < 1.25) and ( meanze <-10) and 

(meantemp >-20) 〉 or 〈 ( meanDz < 1.75) and ( meanze <-10) and (meantemp >-27) and 
(minTopT > -35) 〉 or 〈( meanDz < 2.5) and ( meanze <-8) and (minTopT > -22)〉 ) ]  

  or [(meanZe+devZe >0) and (meanZe-devZe <-15) and (devbase > 0.6) and (meanbase < 5.5) and 
(meanDZ < 4.) and ( minTopT < -30.) and (devtop < 0.6) ]   

  or [(devbase/meanDz > 0.5) and ( mintopT > -5 ) ]   
  or [(Cloud_F < 0.65) or (meandz < 1) or ( mintopT > 2.) ]  
  or [(〈(meanbase < 1.8) and (devbase > 0.6) and (meanZe < -5) 〉 or 〈 (meanbase < 1.2) and (devbase 

> 0.48) and (meanZe < -1.5)〉 ) and (meantop > 3. )  and (meantop < 8.) and (( length < 100) or 
(meanze < -15) ) ]   

 or [(meanbase > 1.7) and  (meantop < 8.) and (mintopT > -35. ) and (( length < 100) or (meanze < -
3) or 〈(devbase > 1) and (devTop <0.3) 〉) and (〈(minbase <0.8) and (devbase > 0.48) 〉 or 
〈(minbase <1.2) and (devbase > 0.57) 〉 or 〈(minbase <1.5) and (devbase > 0.90) 〉 )]  } 

No
As 
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Figure 15. An example of cloud type classification with the CloudSat radar 
measurements. From top to bottom, panels are the CloudSat ground track plotted 
over a merged IR image between 60S and 60N collected around the time of the 
CloudSat overpass (a), cloud type classification results (b), cloud mask results (c), 
calibrated CPR radar reflectivity factor (d), and ECMWF temperature profiles 
under the CloudSat track (e). Note that occurrences of precipitation are indicated 
in (b) with lines below 0 km MSL. 
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5. Data Product Output Format 
 
The format consists of metadata, which describes the data characteristics, and swath data, 
which includes cloud scenario at each range bin, as well as other information.  The 
following schematic illustrates how cloud scenario data is formatted using HDF EOS.  
The variable nray is the number of radar blocks (frames, rays) in a granule.  Each block is 
a 0.16 s average of radar data. 
 

CloudSat Level 2 Cloud Scenario HDF-EOS Data 
Structure 
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                                               Table: nray 
 
                                               
                                               Table: nray 
                                                
Swath                                          Table: nray           
Data                                                 
                                                
                                               Table: nray 
                                                
                                                
                                               Table: nray 
 
                                                
                                                    Table: nray 
                                                
                                                
                                                                                                                             Array:125Xnray 

Cloudsat Metadata       Size: TBD  

Spacecraft Latitude            4 bytes      

Spacecraft Altitude    4 bytes

Cloud scenario, algorithm flag and 
quality flag                      2 bytes            

DEM elevation     2 bytes                  

Range to First Bin   4 bytes 

Spacecraft longitude            4 bytes     

Data status flags   2 bytes                  

 Time                                     10 bytes    

 
 
 
5.1 Product Field Specifications   
     (Generated by AIMS on 24 July 2007) 
 
Dimensions Used 

nray   (typical value: 36383)  Number of CPR rays in one orbit. 
nbin   (typical value: 125)      Number of vertical bins 
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(1) Seconds since the start of the granule. 
Name in file: Profile_time   Range: 0 to 6000 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): REAL(4)   Missing value operator: 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nray    Offset: 0 
Units: seconds     MB: 0.139 
Seconds since the start of the granule for each profile. The first profile is 0. 
 (2) UTC seconds since 00:00 Z of the first profile 
Name in file: UTC_start    Range: 0 to 86400 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): REAL(4)   Missing value operator: 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: <scalar>    Offset: 0 
Units: seconds     MB: 0 
The UTC seconds since 00:00 Z of the first profile in the data file. 
(3) TAI time for the first profile. 
Name in file: TAI_start    Range: 0 to 6e+008 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): REAL(8)   Missing value operator: 
Field type (in algorithm): REAL(8)  Factor: 1 
Dimensions: <scalar>    Offset: 0 
Units: seconds     MB: 0 
The TAI timestamp for the first profile in the data file. TAI is International Atomic Time: 
seconds since 00:00:00 Jan 1 1993. 
(4) Spacecraft Latitude 
Name in file: Latitude    Range: -90 to 90 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): REAL(4)   Missing value operator: 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nray    Offset: 0 
Units: degrees     MB: 0.139 
Spacecraft Geodetic Latitude. 
(5) Spacecraft Longitude 
Name in file: Longitude    Range: -180 to 180 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): REAL(4)   Missing value operator: 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nray    Offset: 0 
Units: degrees     MB: 0.139 
Spacecraft geodetic longitude 
(6) Height of range bin in Reflectivity/Cloud Mask above reference surface (~ mean 
sea level). 
Name in file: Height    Range: -5000 to 30000 
Source: 2B-GEOPROF 011   Missing value: -9999 
Field type (in file): INT(2)   Missing value operator: == 
Field type (in algorithm): INT(2)   Factor: 1 
Dimensions: nbin,nray    Offset: 0 
Units: m     MB: 8.674 
Height of the radar range bins in meters above mean sea level. 
(7) Range to the CPR boresight intercept with the geoid 
Name in file: Range_to_intercept   Range: 600 to 800 
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Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): REAL(4)   Missing value operator: 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: nray    Offset: 0 
Units: km     MB: 0.139 
Range from the spacecraft to the CPR boresight intercept with the geoid. 
(8) Digital Elevation Map 
Name in file: DEM_elevation   Range: -9999 to 8850 
Source: 2B-GEOPROF 011   Missing value: 9999 
Field type (in file): INT(2)   Missing value operator: == 
Field type (in algorithm): INT(2)   Factor: 1 
Dimensions: nray    Offset: 0 
Units: meters     MB: 0.069 
Elevation in meters above Mean Sea Level. A value of -9999 indicates ocean. A value of 
9999 indicates an error in calculation of the elevation. 
(9) CloudSat Bin size 
Name in file: Vertical_binsize   Range: to 
Source: 2B-GEOPROF 011   Missing value: -9999 
Field type (in file): REAL(4)   Missing value operator: == 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: <scalar>    Offset: 0 
Units: m     MB: 0 
effective vertical height of the radar range bin. 
(10) Nominal satellite pitch angle offset from nadir 
Name in file: Pitch_offset   Range: -90 to 90 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): REAL(4)   Missing value operator: 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: <scalar>    Offset: 0 
Units: degrees     MB: 0 
The pitch angle offset from nadir during normal operations. Pitch up is positive (radar 
points along the flight track in the direction of motion), down is negative (radar points 
along the flight track opposite the direction of motion). 
(11) Nominal satellite roll angle offset from nadir 
Name in file: Roll_offset    Range: -90 to 90 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): REAL(4)   Missing value operator: 
Field type (in algorithm): REAL(4)  Factor: 1 
Dimensions: <scalar>    Offset: 0 
Units: degrees     MB: 0 
The roll angle offset from nadir during normal operations. Positive roll results in the 
radar pointing to the right of the flight track. Negative roll to the left. 
(12) Data Quality 
Name in file: Data_quality   Range: 0 to 127 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): UINT(1)   Missing value operator: 
Field type (in algorithm): INT(2)   Factor: 1 
Dimensions: nray    Offset: 0 
Units: --     MB: 0.035 
Flags indicating data quality. If 0, then data is of good quality. Otherwise, treat as a bit 
field with 8 flags: 
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0: RayStatus_validity not normal. 
1: GPS data not valid. 
2: Temperatures not valid. 
3: Radar telemetry data quality is not normal. 
4: Peak power is not normal. 
5: CPR calibration maneuver. 
6: Missing frame. 
7: Not used. 
(13) Data status flags 
Name in file: Data_status    Range: 0 to 127 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): UINT(1)   Missing value operator: 
Field type (in algorithm): UINT(1)  Factor: 1 
Dimensions: nray    Offset: 0 
Units: --     MB: 0.035 
This is a bit field that contains data status flags: 
 
Bit 0: missing frame (0=false, 1=true) 
Bit 1: SOH missing (0=false, 1=true) 
Bit 2: GPS data valid (0=false, 1=true) 
Bit 3: 1 PPS lost (0=false, 1=true) 
Bit 4: Star tracker 1 (0=off, 1=on) 
Bit 5: Star tracker 2 (0=off, 1=on) 
Bit 6: Coast (0=false, 1=true) 
Bit 7: NISC (0=false, 1=true) 
(14) CPR bus orientation (target ID) 
Name in file: Data_targetID   Range: 0 to 81 
Source: 2B-GEOPROF 011   Missing value: 
Field type (in file): UINT(1)   Missing value operator: 
Field type (in algorithm): INT(1)   Factor: 1 
Dimensions: nray    Offset: 0 
Units: --     MB: 0.035 
The target id indicates the orientation of the spacecraft bus. For normal operations the 
target ID is 0. The complete ID table is listed below: 
 
Control Frame 0  
0: CPR to point in 300 seconds - Nominal science mode 
1 - 15: Target ID for testing - not planned for operational use 
 
Control Frame 0, CPR Calibration 
16: CPR to point in 160 seconds 
17: CPR 15º to the right 
18: CPR 15º to the left 
19: CPR 10º to the right -- default rotation 
20: CPR 10º to the left -- default rotation 
21: CPR 5º to the right 
22: CPR 5º to the left 
23 - 29: Target ID for testing - not planned for operational use 
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30 - 36: CPR rotation - not planned for operational use 
37 - 39: Not planned for operational use 
 
Control Frame 1, Four thruster closed-loop 
40: Rotation into the OR orientation 
41: Rotation into the x-track along the anti-ang momentum 
42: Rotation into the x-track along ang momentum 
43: Rotation into the orbit lower orientation 
44: Rotation into alt. OR w/ CPR away from Sun 
45 - 49: Not planned for operational use 
 
Control Frame 2, One thruster open-loop 
50: Rotation into the OR orientation 
51: Rotation into the x-track along the anti-ang momentum 
52: Rotation into the x-track along ang momentum 
53: Rotation into the orbit lower orientation 
54: Rotation into alt. OR w/ CPR away from Sun 
55 - 59: Not planned for operational use 
 
Control Frame 3, Two thruster open-loop 
60: Rotation into the OR orientation 
61: Rotation into the x-track along the anti-ang momentum 
62: Rotation into the x-track along ang momentum 
63: Rotation into the orbit lower orientation 
64: Rotation into alt. OR w/ CPR away from Sun 
65 - 69: Not planned for operational use 
 
Control Frame 4, Four thruster open-loop 
70: Rotation into the OR orientation 
71: Rotation into the x-track along the anti-ang momentum 
72: Rotation into the x-track along ang momentum 
73: Rotation into the orbit lower orientation 
74: Rotation into alt. OR w/ CPR away from Sun 
75 - 80: Not planned for operational use 
 
Control Frame 5 
81: Body into the x-track along the anti-ang momentum 
82 - 1023: Not planned for operational use 
(15) Cloud scenario 
Name in file: cloud_scenario   Range: 0 to 32767 
Source: 2B-CLDCLASS 009   Missing value: 
Field type (in file): INT(2)   Missing value operator: 
Field type (in algorithm): INT(2)   Factor: 1 
Dimensions: nbin,nray    Offset: 0 
Units: none     MB: 8.674 
Algorithm outputs (cloud type and different flags) are combined into a 16 bit 
cloud_scenario. See Table 5 for file specification for 16-Bit cloud scenario. The 
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precipitation flag indicates that the bin associated cloud layer has precipitation or not, and 
is not an indication for the bin. 
  
 
Table 5. File Specification for 16-Bit cloud scenario  

16 Bit Cloud Scenario File Specification Bit Field 
Description Key Result 

0 Cloud scenario flag 0 = not determined * 
1 = determined 

1-4 Cloud scenario 0000 = No cloud 
0001 = cirrus 
0010 = Altostratus 
0011 = Altocumulus 
0100 = St 
0101 = Sc 
0110 = Cumulus 
0111 = Ns 
1000 = Deep Convection  

5-6 Land/sea flag 00 = no specific 
01 = land 
10 = sea 
11= snow (?) 

7-8 Latitude flag 00 = tropical 
01 = midlatitude 
10 = polar 

9-10 Algorithm flag 00 = radar only 
01 = combined radar and 
MODIS 

11-12 Quality flag 00 = not very confident 
01 = confident  

13-14 Precipitation flag 00 = no precipitation 
01 = liquid precipitation 
10 = solid precipitation 
11 = possible drizzle 

15 Spare  
* When cloud scenario is not determined, it may be caused by missing or bad critical 
inputs, such as radar reflectivity and temperature profiles. Data_status contains a flag for 
missing radar rays. 
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6. Operator Instructions 
 
The Level 2 cloud scenario classification processing software will be integrated into 
CORE.  It will be called using the standard CORE procedure for calling modules to 
operate on data files.  The output will be in the form of an HDF-EOS structure in 
memory, which can be saved by CORE and passed on to other Level 2 processing. 
 
This algorithm works at two different modes: radar only and combined radar and 
MODIS. If there are MODIS data and radar results indicate a single layer cloud system, 
algorithm selects the combined radar and MODIS mode, otherwise, algorithm uses radar 
only mode. But the combined radar and MODIS approach is still under development. The 
different modes are indicated in the outputs with algorithm flag. 
 
For quality assessment purpose, statistics for cloud cover and height are generated. 
Average cloud covers within 300 CPR profiles are calculated for all clouds, high, middle 
(As and Ac), low (St, Sc and Cu) and thick (Ns and deep convective) clouds, 
respectively. The occurrence of multi-layer clouds can be seen from this statistics.  The 
percentage of clouds masked by 2B-GEOPROF and analyzed in this algorithm is also 
given. It supposes to be 100%, and less than 100% means something wrong in the 
algorithm. The following is an example of output for cloud cover statistics form test data 
set 1. 
 
 

************** Cloud Cover and Analysis Ststistics *********** 
 Index, Mean Lat, Mean  Lon, Percentage of Cloud Mask Analyzed,  
                       Cloud Cover:All,  High,  Mid, Low,and Thick Clouds 
  1    1.475   93.484  100.000   59.000   18.667   34.333   29.333 0.000 
  2    4.422   92.859  100.000   39.667   12.333   14.000   41.000 0.000 
  3    7.369   92.230  100.000   24.000    9.333   17.000    0.000 0.000 
  4   10.316   91.596  100.000   49.333    7.667   45.667    0.333 0.000 
  5   13.261   90.954  100.000   65.667   20.000   43.667    3.333 24.667 
  6   16.205   90.301  100.000    2.000    2.000    0.333    0.000 0.000 
  7   19.148   89.634  100.000   18.333    4.333   15.333    0.000 0.000 
  8   22.088   88.951  100.000   75.000    5.667   66.000    6.000 22.000 
  9   25.025   88.248  100.000   18.000    2.667   14.667    5.333 0.000 
 10   27.960   87.520  100.000   55.000   61.333    0.667    0.000 0.000 
 11   30.891   86.763  100.000   99.333   44.667    3.000    5.000 96.000 
 12   33.818   85.972  100.000   89.667   35.333   32.333    2.667 43.000 
 13   36.740   85.139  100.000   84.667   10.333   79.667    0.000 0.000 
 14   39.657   84.257  100.000    8.000    6.333    0.667    2.667 0.000 
 15   42.568   83.315  100.000    2.333    2.667    0.333    0.000 0.000 
 16   45.473   82.301  100.000   79.667   37.333   45.333    0.000 0.000 
 17   48.368   81.200  100.000   49.000   11.333   49.333    0.000 0.000 
 18   51.255   79.991  100.000   31.333    9.667   32.333    0.667 0.000 
 19   54.130   78.648  100.000    3.667    4.000    0.000    0.000 0.000 
 20   56.990   77.136  100.000   21.667    1.667    4.667    1.667 16.000 
 21   59.834   75.407  100.000   40.667   42.667    0.000    0.000 0.000 
 22   62.711   73.348  100.000   95.333   24.667   28.000    7.333 52.333 
 23   65.529   70.922  100.000   85.667    8.667    5.667   53.333 34.333 
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 24   68.279   67.993  100.000   76.667    6.333   11.333   42.000 30.333 
 25   70.970   64.325  100.000   19.000    2.667    5.333    0.000 11.333 
 26   73.576   59.581  100.000   36.333    4.000   33.667    2.333 0.000 
 27   76.048   53.225  100.000   32.667   36.333    0.000    0.000 0.000 
 28   78.302   44.419  100.000   36.000   20.333   28.000    0.667 0.000 

   
Cloud height statistics (mean, standard deviation, maximum, and minimum of cloud base 
and top heights) for different type clouds in different latitudes are also calculated. These 
results provide useful information when algorithm or input data have problems. For 
example, if results indicate that high clouds occur below 2 km above sea level, there is 
something wrong in the algorithm or input data.    An example of output for test data set 
one is given below. Cloud types 1 to 8 represent high, As, Ac, St, Sc, Cu, Ns, and deep 
convective clouds, respectively. 
 
 
 
 
 
*******Cloud Height (base and top) Statistics for each type******  
 Type    Mean      STD      Max     Min 
      Whole Granule Average              
  1    11.038    6.007   28.797    5.037               Cloud base 
  1    12.381    5.560   28.917    5.157               Cloud top   
  2     4.205    1.719   12.477   -0.003 
  2     6.360    2.658   14.997    0.597 
  3     3.353    1.467    9.597   -0.003 
  3     4.305    1.634   10.437    0.597 
  4     0.176    0.364    2.157   -0.003 
  4     0.867    0.519    2.757    0.117 
  5     0.370    0.450    3.597   -0.003 
  5     1.531    0.711    5.637    0.117 
  6     1.032    1.213    6.957   -0.003 
  6     2.187    1.621   11.397    0.117 
  7     0.418    0.835    3.357   -0.003 
  7     4.429    2.105   13.077    1.557 
  8     1.169    1.408    3.837   -0.003 
  8     5.423    1.898   12.837    1.557 
      Tropical Average                          -23.5 to 23.5                 
  1    13.059    5.730   28.797    5.037 
  1    14.336    5.221   28.917    7.317 
  2     4.887    1.829    9.837    0.717 
  2     6.688    2.408   13.077    1.557 
  3     3.786    1.949    9.597   -0.003 
  3     5.390    2.171   10.437    2.757 
  4     0.255    0.507    2.157   -0.003 
  4     0.686    0.626    2.277    0.117 
  5     0.507    0.539    2.637   -0.003 
  5     1.467    0.813    4.917    0.117 
  6     1.134    1.285    6.957   -0.003 
  6     2.204    1.459    7.317    0.117 
  7     0.420    0.737    3.357   -0.003 
  7     4.325    1.394    9.477    1.557 
  8     0.697    1.149    3.837   -0.003 
  8     4.651    1.338    8.277    1.557 

 44



      Subtropical Average                   -35 to –23.5 and 23.5 to 35  
  1    11.247    5.631   28.797    5.037 
  1    12.561    5.283   28.917    5.397 
  2     4.048    1.262    9.837    0.717 
  2     5.275    1.549   13.317    2.037 
  3     3.629    2.104    6.477    0.957 
  3     4.133    2.168    6.837    1.077 
  4     0.053    0.258    1.437   -0.003 
  4     0.559    0.439    2.037    0.117 
  5     0.849    0.571    3.597   -0.003 
  5     1.701    0.501    3.957    0.357 
  6     1.235    1.429    5.517   -0.003 
  6     1.918    1.476    5.877    0.117 
  7     0.250    0.625    3.357   -0.003 
  7     3.710    1.704    9.477    1.557 
  8     2.224    1.766    3.837   -0.003 
  8     5.790    1.090    8.277    2.757 
      Midlatitude Average                   -55 to –35 and 35 to 55                     
  1    11.213    6.676   28.797    5.037 
  1    12.375    6.204   28.917    5.157 
  2     4.218    1.245   12.477    1.437 
  2     6.483    2.394   14.757    2.277 
  3     3.338    0.737    5.277    0.237 
  3     4.158    0.633    5.877    2.757 
  4     0.077    0.274    1.437   -0.003 
  4     0.782    0.428    2.037    0.117 
  5     0.231    0.397    3.357   -0.003 
  5     1.539    0.750    5.637    0.117 
  6     0.824    1.124    6.477   -0.003 
  6     2.011    1.548    7.557    0.117 
  7     1.142    1.262    3.357   -0.003 
  7     6.052    2.771   10.437    1.557 
  8     1.651    1.359    3.837   -0.003 
  8     5.462    1.660   10.677    1.797 
      High latitude Average                 -90 to –55 and 55 to 90                   
  1     9.891    5.687   28.797    5.037 
  1    11.356    5.260   28.917    5.157 
  2     3.879    1.962   10.557   -0.003 
  2     6.529    3.157   14.997    0.597 
  3     2.877    1.193    5.037    0.237 
  3     3.581    1.136    6.357    0.597 
  4     0.216    0.282    2.157   -0.003 
  4     1.161    0.329    2.757    0.357 
  5     0.427    0.341    3.117   -0.003 
  5     1.527    0.597    4.917    0.117 
  6     0.999    1.093    5.517   -0.003 
  6     2.374    1.814   11.397    0.117 
  7     0.302    0.700    3.357   -0.003 
  7     4.438    2.066   13.077    1.557 
  8     0.808    1.227    3.837   -0.003 
  8     5.710    2.310   12.837    1.797 
 
 
Another quick look for the performance of algorithm is to plot cloud type profile together 
with radar reflectivity and cloud mask profiles. An example of this plot is given in next 
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page. Horizontal and vertical distributions of cloud types can be easily examined from 
this kind of plot. 
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8. Acronym List 
 
Aqua                         NASA's Earth Observing System PM Project 
ARM                         Atmospheric Radiation Measurement (ARM) 
CIRA            Cooperative Institute for Research in the Atmosphere 
CPR             Cloud Profiling Radar 
CORE                       CloudSat Operational and Research  
EOS            Earth Observing System 
HDF            Hierarchical Data Format 
IFOV            Instantaneous field of view 
IWC                          Ice Water Content 
LITE                         Lidar In-space Technology Experiment      
LWC                         Liquid Water Content 
MMCR                     Millimeter- wave cloud radar 
MODIS                     Moderate Resolution Imaging Spectroradiometer 
CALIPSO                Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations    
VTCW           Vehicle Time Code Word 
 

9. Open Issues 
 
• St and Sc are not well separated in this product. Reported St is low now. We are 

combining CloudSat Radar and CALISPO lidar measurements to better understand 
the differences of St and Sc in terms of CloudSat radar signal globally in hoping to 
improve their separation with CloudSat only measurements. Thus it is better to 
combine St and Sc together for any boundary cloud study.  

 
• High latitude cold near surface clouds might have slightly lower quality in general. 

One factor causing this is that CloudSat radar fails to provide the whole cloud 
structure due to small crystal size under cold and clean environment.  

 
• There are few situations vertically connected layers (visually judged based on their 

horizontal structures) are regarded as one layer based on their vertical connection 
according to high confident cloud mask results, such as examples showed in the 
figure below (highlight with red circles). These situations either caused by weak 
precipitation from top layer or by cloud boundary stretch due to the long radar pulse 
or by cloud masking. We are able to separate simple cases, such as two well defined 
stratiform cloud layers connected by small portion of profiles. But there are still cases 
that we are unable to separate them correctly, which might result in wrong cloud type. 
However, these situations occurred at very low frequency, and you need to be aware 
of this if you look for a case study with CloudSat data. 
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10. Major changes since version 4.0 
 

1) Precipitation identification is improved by selecting thresholds based on CloudSat 
measurements or detail analysis of ground-based observations.  

2) To use bines recovered from surface cluster, cloud masks with values between 20 
and 30 below the first cloud layer (identified with cloud mask ≥ 30) above surface 
are included in the analysis. 

3) Cloud cluster analysis is improved to better group different cloud layer together.   
4) Classification logic is adjusted based on CloudSat data over different regions and 

seasons. 
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