Lecture 6.

Multiple scattering as a source of radiation.

Reflectance from surfaces. Remote sensing of ocean color.

2. Reflectance from surfaces.
3. Applications of passive remote sensing using extinction and scattering: Remote sensing of ocean color.

Required Reading:
S: 6.1, 6.3, 6.4, Petty: 11, Into to Chapter 13, 13.1

Additional reading:
NASA remote sensing of ocean color: http://oceancolor.gsfc.nasa.gov/
Ocean color training material:
http://oceancolor.gsfc.nasa.gov/DOCS/SeaDAS/seadas_training.html

1. Direct and diffuse radiation. Multiple scattering.

The solar radiation field is traditionally considered as a sum of two distinctly different components: direct and diffuse: \(I = I_{\text{dir}} + I_{\text{dif}} \)

Direct radiation is a part of the radiation field that has survived the extinction passing through a layer with optical depth \(\tau \) and it obeys the Beer-Bouguer-Lambert law (see Lecture 6):

\[
I_{\text{dir}}^\dagger = I_0 \exp(-\tau / \mu_0)
\]

where \(I_0 \) is the incident intensity at a given wavelength at the top of a layer and \(\mu_0 \) is a cosine of the incident zenith angle \(\theta_0 \) \((\mu_0 = \cos(\theta_0)) \).
Diffuse radiation

Diffuse radiation arises from the light that undergoes one scattering event (single scattering) or many (multiple scattering).

For single scattering

\[
\mathcal{I}_\lambda (\bar{\Omega}) = k_{s,\lambda} ds \frac{P_\lambda (\bar{\Omega}, \bar{\Omega}')} {4\pi} I_{\lambda} (\bar{\Omega}') d\Omega'
\]

where \(I_{\lambda}(\bar{\Omega}') \) is the incident intensity in the direction defined by a solid angle \(\bar{\Omega}'(\mu', \varphi') \).

For multiple scattering, integrating over all directions:

\[
dI_{\lambda} (\bar{\Omega}) = k_{s,\lambda} ds \int \frac{P_\lambda (\bar{\Omega}, \bar{\Omega}')} {4\pi} I_{\lambda} (\bar{\Omega}') d\Omega'
\]

NOTE: The above equation shows that the phase function redirects the incident intensity in the direction \(\bar{\Omega}'(\mu', \varphi') \) to the direction \(\bar{\Omega}(\mu, \varphi) \), and the integral accounts for all possible scattering events within the \(4\pi \) solid angle.

According to the Beer-Bouguer-Lambert law, scattering radiance from path \(ds \) can be expressed as

\[
dI_{\lambda} = k_{s,\lambda} J_{\lambda} ds
\]

thus (from Eq.[6.2]) **the scattering source function** is

\[
J_{\lambda} (\bar{\Omega}) = \frac {\omega_{0,\lambda}} {4\pi} \int I_{\lambda} (\bar{\Omega}') P_{\lambda} (\bar{\Omega}, \bar{\Omega}') d\Omega'
\]

where \(\omega_{0,\lambda} = k_{s,\lambda} / k_{e,\lambda} \) is the single scattering albedo.
The scattering source function:
1) has units of intensity
2) plays the role of the Planck function in thermal radiative transfer but the scattering source function is more complex
3) depends on the radiation intensity in the incident direction, $I_\lambda(\Omega')$; fraction of radiation which is scattered, $\omega_{0,\lambda}$; and fraction scattered into the new direction $\frac{P(\Omega,\Omega')}{4\pi}d\Omega'$

The monochromatic radiative transfer equation for a plane-parallel atmosphere:
expresses the net change in intensity due to extinction and scattering along path dz:

$$dI = dI \text{ (extinction)} + dI \text{(scattering)}$$

A plane-parallel atmosphere

Using $ds = dz/cos(\theta)$, the radiative transfer equation can be written as

$$\cos(\theta)\frac{dI_\lambda(z,\theta,\varphi)}{k_{e,\lambda}dz} = -I_\lambda(z,\theta,\varphi) + J_\lambda(z,\theta,\varphi)$$ \hspace{1cm} [6.4]

Introducing the optical depth measured from the outer boundary downward as

$$\tau_\lambda(z,0) = \int_0^z k_{e,\lambda}(z)dz$$ \hspace{1cm} [6.5]

and using $d\tau_\lambda = -k_{e,\lambda}(z)dz$ and $\mu = cos(\theta)$, we have

$$\mu \frac{dI_\lambda(\tau;\mu,\varphi)}{d\tau} = I_\lambda(\tau;\mu,\varphi) - J_\lambda(\tau;\mu,\varphi)$$ \hspace{1cm} [6.6]

NOTE: Eq.[6.6] is called the Schwarzchild’s equation and also called the differential form of the radiative transfer equation for the plane-parallel atmosphere.
Upward (or upwelling) intensity I^\uparrow_λ is for $1 \geq \mu \geq 0$ (or $0 \leq \theta \leq \pi / 2$);

Downward (or downwelling) intensity I^\downarrow_λ is for $-1 \leq \mu \leq 0$ (or $\pi / 2 \leq \theta \leq \pi$)

The radiative transfer equation [6.6] can be written for upward and downward intensities:

$$\frac{\mu}{d\tau} \frac{dI^\uparrow_\lambda(\tau, \mu, \phi)}{d\tau} = I^\uparrow_\lambda(\tau, \mu, \phi) - J^\uparrow_\lambda(\tau, \mu, \phi)$$ \[6.7a\]

$$-\frac{\mu}{d\tau} \frac{dI^\downarrow_\lambda(\tau, -\mu, \phi)}{d\tau} = I^\downarrow_\lambda(\tau, -\mu, \phi) - J^\downarrow_\lambda(\tau, -\mu, \phi)$$ \[6.7b\]

Solution of Eq.[6.7a] gives the upward intensity in the plane-parallel atmosphere:

$$I^\uparrow_\lambda(\tau, \mu, \phi) = I^\uparrow_\lambda(\tau^*, \mu, \phi) \exp\left(-\frac{\tau^* - \tau}{\mu}\right)$$ \[6.8a\]

$$+ \frac{1}{\mu} \int_\tau^{\tau^*} \exp\left(-\frac{\tau' - \tau}{\mu}\right) J^\uparrow_\lambda(\tau', \mu, \phi) d\tau'$$

Solution of Eq.[6.7b] gives the downward intensity in the plane-parallel atmosphere:

$$I^\downarrow_\lambda(\tau, -\mu, \phi) = I^\downarrow_\lambda(0, -\mu, \phi) \exp\left(-\frac{\tau}{\mu}\right)$$ \[6.8b\]

$$+ \frac{1}{\mu} \int_0^{\tau} \exp\left(-\frac{\tau - \tau'}{\mu}\right) J^\downarrow_\lambda(\tau', -\mu, \phi) d\tau'$$

First-order scattering:

(observer) → Sun

$\tilde{\Omega}(\mu, \phi)$

$\tilde{\Omega}_0(\mu_0, \phi_0)$

$\tau=0$

$Z=0$

τ^*
Direct solar radiation reaching the altitude \(z \) is

\[
F^\downarrow(z) = F_0 \exp(-k_e(z_i - z)/\mu_o) = F_0 \exp(-\tau/\mu_o)
\]

where \(F_0 \) is the solar constant at the top of the atmosphere.

Scattering of the direct beam is the source of diffuse radiation (see Eq.[6.1])

\[
J(\tau, \mu, \varphi) = \frac{\alpha_0}{4\pi} F_0 \exp(-\tau/\mu_o) P(\mu, \varphi, \mu_o, \varphi_o)
\]

[6.9]

Assuming no surface reflection (dark surface), the upwelling intensity at the level \(Z \) (or \(\tau = 0 \)) can be found from Eq.[6.8a] as

\[
I^\uparrow(\tau, \mu, \varphi) = \int_{\tau}^{\tau^*} J(\tau', \mu, \varphi) \exp[-(\tau' - \tau)/\mu] d\tau'/\mu
\]

[6.10]

Substituting in the source function

\[
I^\uparrow(\tau, \mu, \varphi) = \frac{\alpha_0}{4\pi} F_0 P(\Theta) \int_{\tau}^{\tau^*} \exp[-(\tau' - \tau)/\mu - \tau'/\mu_o] d\tau'/\mu
\]

[6.11]

An observer (i.e., a satellite sensor) at \(Z_{\text{top}} \) (or \(\tau = 0 \)) measures

\[
I^\uparrow(0, \mu, \varphi) = \frac{\alpha_0}{4\pi} F_0 P(\Theta) \frac{\mu_o}{\mu + \mu_o} [1 - \exp(-1/(\mu_o/\mu + 1/\mu))] \]

[6.12]

If \(\tau^* < 1 \) (called the single scattering approximation), Eq.[6.12] simplifies to

\[
I^\uparrow(0, \mu, \varphi) = \frac{\alpha_0}{4\pi} F_0 P(\Theta) \frac{\tau^*}{\mu}
\]

[6.13]

Radiative transfer equation with multiple scattering:

In the general case of multiple scattering

\[
J(\tau, \mu, \varphi) = \frac{\alpha_0}{4\pi} \int_{0}^{2\pi} \int_{-1}^{1} I(\tau, \mu', \varphi') P(\mu, \varphi, \mu', \varphi') d\mu' d\varphi' +
\]

\[
+ \frac{\alpha_0}{4\pi} F_0 P(\mu, \varphi, \mu_o, \varphi_o) \exp(-\tau/\mu_o)
\]

[6.14]

Using the source function for scattering, we can write the **radiative transfer equation** for diffuse radiation as an integro-differential equation:
\[
\frac{dI(\tau, \Omega)}{d\tau} = I(\tau, \Omega) - \frac{\sigma_0}{4\pi} \int I(\tau, \Omega') P(\Omega, \Omega') d\Omega' - \frac{\sigma_0}{4\pi} F_o P(\Omega, \Omega_0) \exp(-\tau / \mu_0)
\]

[6.15]

NOTE: To solve Eq.[6.15], one needs to know the scattering coefficient \(k_{s,\lambda} \), absorption coefficient \(k_{a,\lambda} \) and scattering phase function \(P(\mu, \phi, \mu', \phi') \) as a function of wavelength in each atmospheric layer.

NOTE: Various approximate and “exact” (such as Discrete-ordinate, Adding-doubling, Monte-Carlo, etc.) techniques have been developed to solve the radiative transfer equation for diffuse radiation. Each technique requires a sophisticated numerical code. There are a number of various numerical radiative transfer codes that are openly available to the scientific community.

2. Reflection from surfaces.

Bi-directional reflectance distribution function (BRDF) is introduced to characterize the angular dependence in the surface reflection and defined as the ratio of the reflected intensity (radiance) to the radiation flux (irradiance) in the incident beam:

\[
R(\mu_r, \phi_r, \mu_i, \phi_i) = \frac{\pi I^b (\mu_r, \phi_r)}{I^b (\mu_i, \phi_i) \mu_i d\Omega_i}
\]

[6.16]

where \(\mu_i = \cos(\theta_i) \) and \(\theta_i \) is the incident zenith angle, \(\phi_i \) is the incident azimuthal angle, and \(\mu_r = \cos(\theta_r) \) and \(\theta_r \) is the viewing zenith angle, \(\phi_r \) is the viewing azimuthal angle.
Two extreme types of the surface reflection:

specular reflectance and diffuse reflectance.

Specular reflectance is the reflectance from a perfectly smooth surface (e.g., a mirror):

\[\text{Angle of incidence} = \text{Angle of reflectance} \]

- Reflection is generally specular when the "roughness" of the surface is smaller than the wavelength of radiation. In the solar spectrum (about 0.4 to 2 \(\mu m \)), reflection is therefore specular on smooth surfaces such as still water.
- Practically all real surfaces are not smooth and the surface reflection depends on the incident angle and the angle of reflection. Reflectance from such surfaces is referred to as diffuse reflectance.

Special case of diffuse reflection: Lambertian reflection.

A surface called the Lambert surface if it obeys the Lambert’s Law which states that the diffusely reflected light is isotropic and unpolarized (i.e., natural light) independently of the state of polarization and the angle of the incidence light.

\[R(\mu_r, \varphi_r, \mu_i, \varphi_i) = R_L \]

where \(R_L \) is the Lambert reflectance (also called surface albedo).
In general, the surface reflectance (albedo) is a function of wavelength.

Examples of representative surface albedo at ~ 550 nm wavelength:

- fresh snow/ice =0.8-0.9
- deserts= 0.25-0.3
- soil/vegetation=0.1-0.25
- ocean=0.05

Figure 6.1 Examples of spectral reflectances (albedo) of various surfaces.

NOTE: Each surface type has a specific spectral fingerprint that is the surface reflectance has a specific dependence on the wavelength. This plays a central role in the remote sensing of land and ocean surfaces.
3. Applications of passive remote sensing using extinction and scattering: Remote sensing of ocean color

Remote sensing of ocean color provides information on the abundance of phytoplankton (chlorophyll) and the concentration of dissolved and particulate material in surface ocean waters.

Importance:

- biological productivity in the oceans (the oceans take up about 1/3 of CO$_2$, two major mechanism: solubility pump and biological pump, the latter is controlled by phytoplankton biomass)
- marine optical properties,
- the interaction of winds and currents with ocean biology,
- effects of human activities on the oceanic environment.

Ocean color is referred to the wavelength dependence of the water-leaving radiances at the ocean surface. Ocean color is the result of scattering and absorption by chlorophyll pigments, as well as dissolved and particulate matter in the surface ocean water.

Principles of ocean color retrievals:

Phytoplankton has a specific absorbing spectrum => its concentration can be retrieved if the spectral water-leaving radiances are measured.

Need for accurate atmospheric correction:

Water-leaving radiances can be as low as a few percent of the TOA (top-of-the-atmosphere) radiances measured by satellite sensors => it is critical to quantify and correctly remove the contribution from the atmosphere to the TOA radiances.

Satellite sensors used for ocean color:

(see more info at http://oceancolor.gsfc.nasa.gov/)

CZCS (Coastal Zone Color Scanner, flown on the NIMBUS-7 satellite):

data available for 1978 - 1986

SeaWiFS (Sea-viewing Wide Field-of-View Scanner, launched onboard Orbview-2 satellite): data from 1997
MODIS (Moderate Resolution Imaging Spectroradiometer), launched on Terra and Aqua satellites: data from 1999 for Terra and from June 2002 for Aqua

Table 6.1 MODIS, SeaWiFS, and CZCS channels and their central wavelengths used for ocean color retrievals.

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>MODIS</th>
<th>SeaWiFS</th>
<th>CZCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>443</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>490</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>530</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>550</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>670</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>681</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>750</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>865</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Concept of an ocean color retrieval algorithm (retrieval of the chlorophyll concentration):

CZCS, SeaWiFS and MODIS algorithms use the normalized water-leaving radiance $[I_w]_N$ defined as

$$I_w(\lambda) = [I_w(\lambda)]_N T(\lambda) \quad [6.18]$$

where

$T(\lambda)$ is the diffuse transmittance;

$I_w(\lambda)$ is the radiance reflected by water.

The normalized water-leaving radiance is approximately the radiance that would exit the ocean in the absence of the atmosphere with the sun in the zenith.

Assuming the Lambertian surface, reflectance associated with the radiance $[I_w]_N$ can be defined as

$$[R_w(\lambda)]_N = \frac{\pi}{F_o} [I_w(\lambda)]_N$$

and Eq. [6.18] becomes

$$R_w(\lambda) = [R_w(\lambda)]_N T(\lambda)$$
Figure 5.2 Normalized water-leaving reflectance ratio as a function of pigment (chlorophyll a) concentration (Gordon et al. 1988).

If the ratio $\left[R_w(443) \right]_N / \left[R_w(550) \right]_N$ is known, the pigment concentration C can be approximated as

$$\log_{10}(3.33C) = -1.2 \log_{10} r + 0.5(\log_{10} r)^2 - 2.8(\log_{10} r)^3$$

where $r = 0.5\left[R_w(443) \right]_N / \left[R_w(550) \right]_N$

NOTE: Retrievals of ocean color are strongly affected by atmospheric conditions. No retrievals in the presence of clouds and heavy aerosol plumes (i.e., large optical depth).

NOTE: “Ocean color”-like algorithms are also widely used for characterizing lake, rivers, and other water bodies.
Importance of accurate sensor calibration and atmospheric correction:

Figure 6.3 Example of water leaving radiances and TOA radiances as a function of wavelength

The atmosphere is 80-90% of the total top-of-atmosphere signal in blue-green wavelengths (400-600 nm)

~1% error in instrument calibration or atmospheric model leads to ~10% error in water leaving radiances $I_w(\lambda)$

NOTE: Water leaving radiances are low at ~800-900 nm (called dark ocean) so that radiances measured by channels located in this spectral region are affected by atmosphere only -> used for atmospheric correction.