Review for Mid-term Exam 1:

 Lecture 1

2. The nature of electromagnetic radiation and electromagnetic spectrum.
 Lecture 2, Eqs.[2.2]-[2.5]

3. Main radiometric quantities: flux (or irradiance) and intensity (or radiance).
 Lecture 2, Eqs.[2.6]-[2.10]

 Lecture 3

 Lecture 3, Eqs.[3.10.1-3.13], [3.15-3.18], Lab 1

 Lecture 3, Eqs. [3.19-3.24], Lab 1

 Lecture 4, Eqs. [4.5-4.8], [4.10-4.13], Lab 3

8. The Beer-Bouguer-Lambert (extinction) law.
 Lecture 5, Eqs.[5.1-5.4]

9. Concept of scattering. Scattering phase function and asymmetry parameter.
 Lecture 5, Eqs.[5.5-5.8]

10. Molecular (Rayleigh) scattering. Rayleigh scattering phase function. Scattering cross section of air molecules and optical depth due to molecular scattering
 Lecture 5, Eqs.[5.18-5.22], [5.26-5.27]

11. Properties of atmospheric aerosols and clouds (size distribution and refractive index). Scattering and absorption by aerosols and cloud drops: scattering and absorption efficiencies and cross sections; volume extinction, scattering and absorption coefficients; scattering phase function and single scattering albedo.
 Lecture 5, Eqs.[5.29-5.30], [5.32],[5.46 -4.54], Lab 4
12. Effective (total) optical properties of an atmospheric layer consisting of gas and particulates (aerosols and/or cloud).
 Lecture 5, Eqs. [5.56]-[5.59]

 Lecture 5, Eqs. [5.62]-[5.67], [5.68], Lab 4

 Lecture 6, Eqs. [6.3]

15. First-order scattering approximation.
 Lectures 6, Eqs. [6.9] - [6.13]

 Lecture 6, Eqs. [6.16-6.17]

17. Principles of remote sensing of ocean color.
 Lecture 6

18. Combined atmosphere and surface reflection
 Lecture 7, Eqs.[7.3]-[7.4]

19. Principles of aerosol retrievals from passive remote sensing in the solar spectrum.
 Lecture 7, Lab 6